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Stepwise structure of Lyapunov spectra for many-particle systems
using a random matrix dynamics
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The structure of the Lyapunov spectra for the many-particle systems with a random interaction between the
particles is discussed. The dynamics of the tangent space is expressed as a master equation, which leads to a
formula that connects the positive Lyapunov exponents and the time correlations of the particle interaction
matrix. Applying this formula to one- and two-dimensional models we investigate the stepwise structure of the
Lyapunov spectra that appear in the region of small positive Lyapunov exponents. Long range interactions lead
to a clear separation of the Lyapunov spectra into a part exhibiting stepwise structure and a part changing
smoothly. The part of the Lyapunov spectrum containing the stepwise structure is clearly distinguished by a
wavelike structure in the eigenstates of the particle interaction matrix. The two-dimensional model has the
same step widths as found numerically in a deterministic chaotic system of many hard disks.
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I. INTRODUCTION

Chaos is characterized by a rapid expansion of a sm
initial error, and the Lyapunov exponent, which is defined
the time averaged exponential rate of the time evolution
infinitesimal perturbations of the dynamical variables, is
troduced to express such characteristics quantitatively.
Lyapunov exponent is used to discuss some statistical p
erties of many-body systems~e.g., the mixing property!. It is
also known that the Lyapunov exponents are connecte
the amount of information of the system~e.g., the
Kolmogorov-Sinai entropy!, and to the transport coefficient
~e.g., conductance and viscosity! @1–3#.

In general, the Lyapunov exponent depends on the di
tion of the infinitesimal perturbation of the dynamical va
ables at an initial time, so we obtain a Lyapunov expon
for each independent direction in the system. The sorted
of such Lyapunov exponents is the so called Lyapunov sp
trum, and has been the subject of study in many cha
particle systems. For example, the thermodynamic limit
the Lyapunov spectrum, that is, that the spectrum retain
shape as the number of particles increase is discussed
numerical evidence@4,5#, random matrix approaches@6–8#,
a periodic orbit approach@9#, and mathematical argumen
@10,11#. Some works showed a linear behavior of t
Lyapunov spectrum in one-dimensional models with near
neighbor interactions@4–8#, although this conjecture is
modified in weak chaotic systems@12,13#. The effect of the
rotational degrees of freedom of molecules on the Lyapu
spectrum was investigated in a model consisting of diato
molecules, which showed an explicit separation of the ro
tional and translational degrees of freedom if the depar
from sphericity is small enough@14,15#. The Lyapunov spec-
tra of systems in nonequilibrium steady states were inve
gated in Refs.@16–19# with the discovery of the conjugat
pairing rule for some systems with isokinetic thermost
@20–23#. Avoided crossings and level repulsion in th
Lyapunov spectrum, similar to the behavior of the ene
levels in a quantum chaotic system, was discussed in a
1063-651X/2002/65~5!/056202~15!/$20.00 65 0562
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tually coupled map system@24#. These works suggest th
possibility of getting information about the system from t
structure of its Lyapunov spectrum. The Lyapunov spectr
has also been of interest for the number dependence o
maximum Lyapunov exponent in particle systems@6,19,25–
27#, and the Kaplan-York Lyapunov dimension@28–31#.

One of the characteristics of the Lyapunov spectru
which has been shown recently in systems consisting
many hard disks, is its stepwise structure@14,15,19,32,33#.
Such a stepwise structure appears in the distinct region
small positive Lyapunov exponents. Corresponding to t
stepwise structure are the so called Lyapunov modes
wavelike structure in the tangent space of each eigenve
of a degenerate Lyapunov exponent, that is, for each s
wise structure. An explanation of the stepwise structure
the Lyapunov spectrum due to symmetries of the system
tried using two-dimensional periodic orbit models@9#. On
the other hand, explanations for the Lyapunov modes w
suggested using a random matrix approach for a o
dimensional model@34# and more recently using a kineti
theoretical approach@35#. The small Lyapunov exponent
correspond to slow relaxation processes in the equilibri
state, so these results suggest the possibility of character
the macroscopic behavior in many-particle systems from
microscopic point of view.

This paper has two main purposes. First we consider
dynamics of the tangent space in dynamical systems wi
random interaction between the particles. Different from
other random matrix approaches for the Lyapunov spect
@6,8,34,36#, which use discretized models in time, we co
sider the continuous dynamics in time and derive a met
to calculate the Lyapunov spectrum from a master equa
technique. Using this method the Lyapunov spectrum is
rectly connected to the correlations of the particle interact
matrix. As the second purpose we discuss the stepwise s
ture of the Lyapunov spectrum using this random matrix
proach. We consider one- and two-dimensional models sa
fying the total momentum conservation with period
boundary condition. These models show a stepwise struc
of the Lyapunov spectra only in a region of small positi
©2002 The American Physical Society02-1
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Lyapunov exponents. We discuss the robustness of the s
wise structure against perturbations in the matrix element
the particle interaction matrix. The long range interactio
between the particles lead to a clear separation into a pa
the spectrum exhibiting stepwise structure and a part cha
ing smoothly with exponent number. We also find a wavel
structure in the eigenstates of the particle interaction ma
in the part of the Lyapunov spectrum containing stepw
structure. As a high dimensional effect we show that in
two-dimensional model we get wider steps in the Lyapun
spectrum, such as steps consisting of four and eight de
erate exponents, rather than simply two exponents as in
one-dimensional models. The step widths of four and ei
exponents are actually observed in the numerical simula
of the many-hard-core-disk system@32#.

II. RANDOM MATRIX DYNAMICS OF THE
TANGENT VECTOR

We consider a Hamiltonian system whose state at timet is
described by the 2N dimensional phase space vectorG(t)
[„q(t),p(t)…T with the spatial coordinate vectorq(t), the
momentum vectorp(t), and the transpose operationT. The
dynamics of the phase space is described by the Hamilto
equation

dG~ t !

dt
5J

]H„G~ t !,t…

]G~ t !
, ~1!

with the HamiltonianH„G(t),t…. Here we allow an explicit
time dependence of the Hamiltonian, andJ is the 2N32N
matrix defined by

J[S 0I I

2I 0I D , ~2!

whereI is theN3N identical matrix and 0I is theN3N null
matrix. It should be noted that the matrixJ satisfies the con-
ditionsJT52J andJ252 Ī with the 2N32N identical ma-
trix Ī .

The dynamics of the tangent vectordG(t) as a small de-
viation of the phase space vector is described by the lin
ized equation

ddG~ t !

dt
5JL~ t !dG~ t ! ~3!

of the Hamiltonian equation~1! whereL(t) is defined by

L~ t ![
]2H„G~ t !,t…

]G~ t !]G~ t !
. ~4!

The matrixL(t) is symmetric:L(t)5L(t)T. At this point we
note that an equation equivalent to Eq.~3! can also be ob-
tained for a system whose dynamics is not derivable from
Hamiltonian.

Equation~3! is formally solved as

dG~ t !5M ~ t,t0!dG~ t0!, ~5!
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where the matrixM (t,t0) is defined by

M ~ t,t0![TQ expFJE
t0

t

ds L~s!G , ~6!

with the positive time-ordering operatorTQ with the latest
time to the left. Equation~6! leads to

M ~ t,t0!215TW expF2JE
t0

t

dsL~s!G52JM~ t,t0!TJ, ~7!

with the negative time-ordering operatorTW with the latest
time to the right, so that the Hamiltonian phase volume
preserved, namely,uDet$M (t,t0)%u51.

For simplicity, we consider the case of no external for
field, so the HamiltonianH„G(t),t… is represented as
H„G(t),t…5up(t)u2/(2m)1V„q(t),t…, where m is the mass
of the particle andV„q(t),t… is the potential energy at timet.
In this case the matrixL(t) is given by

L~ t !5S 2R~ t ! 0I

0I I /mD , ~8!

whereR(t)[„Rab(t)… is a N3N symmetric matrix defined
by 2]2V„q(t),t…/]q(t)]q(t). The effect of particle interac-
tions is taken into account through the matrixR(t).

Now we move from considering particular Hamiltonia
model systems to introducing a random interaction betw
the particles. We consider the case where the particle in
actions occur randomly enough, so that the matrix eleme
Rab(t), a51,2, . . . ,N, b51,2, . . . ,N can be regarded as
Gaussian white randomness in the sense of

^Ra1b1
~ t1!Ra2b2

~ t2!•••Ra2n21b2n21
~ t2n21!&50, ~9!

^Ra1b1
~ t1!Ra2b2

~ t2!•••Ra2nb2n
~ t2n!&

5(
Pd

Da j 1
b j 1

a j 2
b j 2

Da j 3
b j 3

a j 4
b j 4

•••Da j 2n21
b j 2n21

a j 2n
b j 2n

3d~ t j 1
2t j 2

!d~ t j 3
2t j 4

!•••d~ t j 2n21
2t j 2n

! ~10!

for any integern, where we take the sum over only the pe
mutation Pd : (1,2, . . . ,2n)→( j 1 , j 2 , . . . ,j 2n), and the
bracket̂ •••& means the ensemble average over random p
cesses. HereD jkln is a fourth rank tensor and is assumed
be constant in the rest of this paper.

In order to justify thed function relaxation~10! of the
time correlations as a description of a deterministic chao
system whose characteristic correlation time scale is not
finitesimal, it may be necessary to modify the time scale b
finite correlation time. Such a change of the time scale m
tiplies the Lyapunov exponents by a factor. However, in t
paper we will only consider the ratios of the Lyapunov e
ponents, especially the Lyapunov exponents divided by
largest Lyapunov exponent, and for these quantities the p
lem of the time scale no longer appears explicitly. It may a
2-2
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be noted that the random particle interactions expresse
Eqs. ~9! and ~10! can be derived formally from a harmon
oscillator interaction potential with time-dependent Gauss
white-noise amplitudes.

The tensorD jkln satisfies the condition

Dln jk5D jkln , ~11!

because the equation D jklnd(s2t)5^Rjk(s)Rln(t)&
5^Rln(t)Rjk(s)&5Dln jkd(s2t) is satisfied at arbitrary
timess andt. The symmetric property of the matrixR(t) also
imposes the conditions

D jknl5Dk jln5D jkln ~12!

for the tensorD jkln .
Under the Gaussian white conditions~9! and ~10! for the

matrix R(t), the dynamics described by Eq.~3! for the tan-
gent vector can be regarded as a stochastic process. No
consider the description of this stochastic process by a m
ter equation for the probability densityr(dG,t) for the tan-
gent vector space in whichr(dG,t)ddG is introduced as the
probability of finding a tangent vectordG in the region
(dG,dG1ddG). By applying the Kramers-Moyal expansio
to the dynamics~3! with the randomness given by Eqs.~9!
and ~10! we obtain

]r~dG,t !

]t
52 (

a51

N
dpa

m

]r~dG,t !

]dqa
1 (

a51

N

(
b51

N

(
m51

N

3 (
n51

N
1

2
Dambndqadqb

]2r~dG,t !

]dpm ]dpn
. ~13!

Equation ~13! is a master equation for the tangent vec
dG5(dq,dp)T with dq[(dq1 ,dq2 , . . . ,dqN)T and dp
[(dp1 ,dp2 , . . . ,dpN)T, especially the type of the equatio
called the Fokker-Plank equation because its right-hand
includes up to the second derivative of the probability d
sity with respect to the variables. The derivation of Eq.~13!
is given in Appendix A. We should notice that the first ter
on the right-hand side of Eq.~13! has the same form as th
corresponding term in the Liouville equation describing no
interacting particle systems, because the dynamics of
phase space point and the tangent space point coincide i
noninteracting particle system. The characteristics of the
tem are introduced through the fourth rank tensorDambn and
a boundary condition for a solution of Eq.~13!.

III. LYAPUNOV SPECTRUM IN THE RANDOM
MATRIX APPROACH

In this section, using the Fokker-Plank equation~13! for
the tangent vector we investigate the absolute values of
tangent vectors, whose asymptotic behaviors lead to
Lyapunov exponents.

We introduce the quantitiesY jk
( l )(t), l 51,2,3 as

Y jk
(1)~ t ![^dqjdqk& t , ~14!

Y jk
(2)~ t ![^~dqjdpk1dqkdpj !& t/2, ~15!
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Y jk
(3)~ t ![^dpjdpk& t , ~16!

where^•••& t denotes the average over the probability de
sity r(dG,t) at time t: ^•••& t[*ddGr(dG,t)•••. These
quantities consist of elements of the averaged ma
^dGdGT& t , and satisfies the condition

Y jk
( l )~ t !5Yk j

( l )~ t !. ~17!

Equation~13! connects these quantities as

dY jk
(1)~ t !

dt
5

2

m
Y jk

(2)~ t !, ~18!

dY jk
(2)~ t !

dt
5

1

m
Y jk

(3)~ t !, ~19!

dY jk
(3)~ t !

dt
5 (

a51

N

(
b51

N

D j akbYab
(1)~ t !, ~20!

where we assumed the probability densityr(dG,t) to be zero
at the boundary of the tangent space, and used Eqs.~11!,
~12!, and~17! to derive Eq.~20!.

Now we introduce a fourth rank tensorTjkln satisfying the
condition

(
a51

N

(
b51

N

Ta jkbTbnla5d j l dkn , ~21!

so that we obtain

(
a51

N

(
b51

N

(
m51

N

(
n51

N

Tj abkDamnbTnnm l5L jkd j l dkn , ~22!

with the real second rank tensorL jk satisfying the condition
L j j >0 @38#. @Concerning Eqs.~21! and ~22!, for example,
the existence of the real tensorL jk satisfying Eq.~22! simply
comes from the fact that by the condition~12! we can regard
the quantityD jkln as the matrix elementDg1( j ,n)g2(k,l ) of the

N23N2 real symmetric matrixD[(Dg1( j ,n)g2(k,l )) where

gn5gn( j ,k), n51,2 are functions fromj P$1,2, . . . ,N% and
kP$1,2, . . . ,N% to gnP$1,2, . . . ,N2%.# We will discuss an
example of the tensorsTjkln and L jk in the following sec-
tion. By using the tensorTjkln we transform the quantities
Y jk

( l )(t) to Ỹ jk
( l )(t) as

Ỹ jk
( l )~ t ![ (

a51

N

(
b51

N

Tj abkYab
( l ) ~ t !. ~23!

The inverse transformation to derive the quantityY jk
( l )(t)

from the quantityỸab
( l ) (t) is simply given by

Y jk
( l )~ t !5 (

a51

N

(
b51

N

Tbk jaỸab
( l ) ~ t ! ~24!
2-3
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noting the relation~21!. Especially we should notice the re
lations ^udqu2& t5(a51

N Ỹaa
(1)(t) and ^udpu2& t5(a51

N Ỹaa
(3)(t)

under the condition(a51
N Tj aak5d jk .

Noting that the quantityỸ j j
(1)(t) is the square of the am

plitude of the j th spatial component of an orthogona
transformed tangent vector, we introduce the positive~or
zero! Lyapunov exponentsl j as

l j5 lim
t→`

1

2t
ln

Ỹ j j
(1)~ t !

Ỹ j j
(1)~0!

, ~25!

namely, as the exponential rate of the time evolution of
average of magnitude of the infinitesimal deviation of t
phase space orbit in the long time limit. The introduction
Lyapunov exponents by the spatial coordinate part only~or
the momentum part only! of the tangent vector has been us
previously in Refs.@26,39#.

As shown in Appendix B, the Lyapunov exponents a
simply given by

l j5F L j j

~2m!2G 1/3

, ~26!

using the quantityL j j introduced in Eq.~22!. Equation~26!
is the key result of this paper. This equation connects
Lyapunov exponents directly with the tensorD jkln represent-
ing the strength of correlation of the particle interactions, a
also shows the fact that in a system described by the ran
matrix dynamics the Lyapunov exponents are independen
the initial condition like in the deterministic chaos. It shou
be noted that the Lyapunov exponentsl j given by Eq.~26!
are the same with the quantities derived from the equat
limt→`(2t)21 ln@Ỹj j

(k)(t)/Ỹj j
(k)(0)#, k52,3 in this approach~see

Appendix B!.
We sort the Lyapunov exponentsl1 ,l2 , . . . ,lN so that

they contain a decreasing~or equal! sequence, and introduc
the set$l [1] ,l [2] , . . . ,l [N]% satisfying the condition

$l [1] ,l [2] , . . . ,l [N]%5$l1 ,l2 , . . . ,lN%, ~27!

l [1]>l [2]>•••>l [N] . ~28!

This sorted set of the Lyapunov exponents is called
Lyapunov spectrum.

IV. A SIMPLIFICATION

Before considering the Lyapunov spectra in concr
models using the formula given in the preceding section,
discuss an assumption to simplify the model calculations.
consider the case where all matrix elementsRjk(t), j
51,2, . . . ,N andk51,2, . . . ,N have the same time depen
dence, namely,

Rjk~ t !5r ~ t !Ajk , ~29!

where r (t) is a normalized Gaussian white randomness
the sense of̂ r (t1)r (t2)•••r (t2n21)&50 and ^r (t1)r (t2)••
•r (t2n)&5(Pd

d(t j 1
2t j 2

)d(t j 3
2t j 4

)•••d(t j 2n21
2t j 2n

) for
any inte-
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gern andA[(Ajk) is a time-independentN3N matrix. The
matrix A must be a symmetric matrix,

Ak j5Ajk , ~30!

because the matrixR(t) is symmetric.
The assumption~29! simplifies our considerations, be

cause in this case the tensorD jkln is represented as the mu
tiplication of the matrix elementAjk with Aln . Thus

D jkln5AjkAln ~31!

and the conditions~11! and ~12! for the tensorD jkln are
automatically satisfied under the condition~30!. The condi-
tion ~30! also implies that the matrixA is diagonalizable
using an orthogonal matrixU[(U jk) satisfying UTU
5UUT5I , namely, (UTAU) jk5ajd jk with real eigenvalues
al , l 51,2, . . . ,N of the matrix A. The fourth rank tensor
Tjkln is constructed as

Tjkln5Uk jUln , ~32!

which satisfies the conditions~21!, ~22!, and (a51
N Tj aak

5d jk . Here the second rank tensorL jk is represented as

L jk5ajak , ~33!

which satisfies the conditionsL j j >0. Equations~26! and
~33! lead to the expression of the Lyapunov exponents a

l j5U aj

2mU2/3

. ~34!

After all, under the assumption~29! the calculation of the
Lyapunov spectrum is attributed to the eigenvalue probl
of the matrixA.

V. ONE-DIMENSIONAL MODELS AND STEPS OF THEIR
LYAPUNOV SPECTRA

In this section we consider simple one-dimensional m
els and calculate their Lyapunov spectra using the form
given in Sec. III under the assumptions discussed in Sec
We are generally interested in which ingredients of t
model system lead to particular features of the Lyapun
spectra. We are especially interested in models that sa
the total momentum conservation and show stepwise st
tures in their Lyapunov spectra. Numerically the observat
of Lyapunov modes is associated with the systems wit
stepwise structure of their Lyapunov spectrum, such as
many-hard-disk system of Refs.@14,15,19,32,33#.

We construct a model consisting ofN particles in a one-
dimensional space. In this case the off-diagonal matrix e
mentAjk , j Þk represents the strength of the interaction b
tween the j th particle and thekth particle. The diagona
matrix elementAj j is determined by the total momentum
conservation that imposes the condition

(
k51

N

Ajk50 ~35!
2-4
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for the matrixA. Equation~35! is derived from Eq.~29! and
the equation(k51

N Rjk(t)50 satisfied at any timet. Using the
formula ~34! this condition implies that theN dimensional
vector, whose components are equal, is an eigenstate o
matrix A corresponding to the eigenvalue 0, so we obtain

l [N]50, ~36!

namely, there is a zero Lyapunov exponent correspondin
the conservation of total momentum.

A. One-dimensional model with a stepwise structure of its
Lyapunov spectrum

As a first step, we consider the case where each par
interacts only with its nearest-neighbor particles with t
same strength of interaction. We impose periodic bound
conditions, namely, that the particles are on a o
dimensional ring structure. This situation is described by
matrix A5A(0)[(Ajk

(0)) defined by

Ajk
(0)[v@22d jk1d j (k11)1d ( j 11)k1d j (k2N11)1dk( j 2N11)#

~37!

with a ~nonzero! real constantv. We can calculate the eigen
values of the matrixA(0) ~see Appendix C for the calculatio
details!, and obtain the Lyapunov exponentsln5ln

(0) as

ln
(0)5F uvu

m S 12cos
2pn

N D G2/3

. ~38!

It is important to note that the Lyapunov exponents given
Eq. ~38! satisfy the conditionslN

(0)50 and

l j
(0)5lN2 j

(0) ~39!

for j ,N/2, namely, the Lyapunov spectrum has degene
cies. In other words the spectrum has a stepwise struc
The maximum Lyapunov exponent is given by (2uvu/m)2/3

whenN is even or$uvu@11cos(p/N)#/m%2/3 whenN is odd.

B. Robustness of the stepwise structure of the Lyapunov
spectrum to a perturbation

Next we consider the case where each particle inter
with its nearest-neighbor particles by slightly different inte
action strengths. This situation is described by the matriA
5A(0)1«A(1) with « a small parameter and the matrixA(1)

defined as

Ajk
(1)52~x j1x j 11!d jk1x jd j (k11)1xkdk( j 11)

1x1@d j (k2N11)1dk( j 2N11)#, ~40!

wherex j , j 51,2, . . . ,N11 are real constants satisfying th
conditionxN115x1. In this case we can calculate the eige
values of this matrixA to first order in the small parameter«,
and obtain the Lyapunov exponentsln5ln

(0)1«ln
(1)

1O(«2) in the expanded form by the parameter« with the
quantities
05620
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l j
(1)5

2l j
(0)

3v
~x̃01ux̃ j u!, ~41!

lN2 j
(1) 5

2lN2 j
(0)

3v
~x̃02ux̃ j u!, ~42!

in the case ofj ,N/2, wherex̃ j is defined by

x̃ j[
1

N (
a51

N

xa expS 4p ia j

N D . ~43!

@See Appendix C for the derivations of Eqs.~41! and ~42!.#
Here we numbered so that we obtainv(l j

(1)2lN2 j
(1) )>0. It

may be noted that the quantityx̃0 in Eqs. ~41! and ~42! is
simply the arithmetic average of the coefficientsx j , j

51,2, . . . ,N: x̃05N21( j 51
N x j . We also obtain lN/2

(1)

52lN/2
(0) x̃0 /(3v) if the numberN is even, andlN

(1)50 for
the first order correction to the nondegenerate Lyapunov
ponents.

Equations~41! and~42! tell us about the robustness of th
stepwise structure of the Lyapunov spectrum appearing
the nonperturbed system against the perturbation. To dis
this point we consider the deviationul j2lN2 j u of the two
points in the j th step of the Lyapunov spectrum, which
given by

ul j2lN2 j u5
4

3
U«x̃ j

v
Ul j1O~«2! ~44!

in the case ofj ,N/2. Equation~44! implies that the degen
eracies, namely, the stepwise structure of the Lyapunov s
trum is removed by the perturbation«A(1), but their devia-
tions are small in a region of small Lyapunov expone
rather than in a region of large Lyapunov exponents, as fa
the quantityx̃ j is almostj independent. In other words, thi
consideration suggests that the stepwise structure of
Lyapunov spectrum is robust in the region of sm
Lyapunov exponents. It should be emphasized that thi
consistent with the numerical results of the Lyapunov sp
trum in a many-hard-disk model, which shows the stepw
structure of the Lyapunov spectrum only in a region of sm
Lyapunov exponents@14,15,19,32,33#. By using Eqs.~41!
and ~42! we can also discuss a perturbational effect in
global shape of the Lyapunov spectrum. Equations~41! and
~42! lead to the shift of thej th step of the Lyapunov spec
trum as

l j1lN2 j

2
2l j

(0)5
2x̃0

3v
l j«1O~«2! ~45!

in the casej ,N/2. Equation~45! implies that in the case o
x̃0«/v.0 (x̃0«/v,0) the perturbation«A(1) makes the
slope of the Lyapunov spectrum more~less! steep than in the
nonperturbed case.

Now we discuss the robustness of the stepwise struc
of the Lyapunov spectrum against perturbation in a sligh
different way, in which the fluctuations of the matrix ele
2-5
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ments ofA are large enough so that the above first or
perturbed discussion is no longer correct. We consider a o
dimensional system described by the matrixA5A(1) given
by Eq. ~40!, in which the quantitiesx j , j 51,2, . . . ,N are
chosen randomly from the region (a,b). Figure 1 is a
Lyapunov spectrum normalized by the maximum Lyapun
exponent in such a system consisting of 100 particlesN
5100). Here, we chose the region (a,b) as a5v/2 andb
53v/2, and took the arithmetic average over this rando
ness for the normalized Lyapunov spectrum. Although
magnitudeb2a(5v) of fluctuations in the matrix element
of the matrixA is of the same scale as the averaged mag
tude (a1b)/2(5v) of the matrix elements of the matrixA,
we can still recognize some steps in the Lyapunov spect
in the region of small Lyapunov exponents. It is interesti
to note that in such a case the global shape of the Lyapu
spectrum is rather close to a straight line, like discussed
Refs.@4–8#.

C. Effect of long range interactions and wavelike structures
in eigenstates

In this subsection we consider the effects of long ran
interactions between particles on the Lyapunov spectr
The effect of the long range interactions between partic
can be taken into account using the matrixA5A[nl ]

[(Ajk
[nl ] ) defined by

Ajk
[nl ]5(

l 51

nl

@2~s j
[ l ]1s j 1 l

[ l ] !d jk1s j
[ l ]d j (k1 l )1sk

[ l ]dk( j 1 l )

1s j 2N1 l
[ l ] d j (k1N2 l )1sk2N1 l

[ l ] dk( j 1N2 l )#, ~46!

with real constantss j
[ l ] , wherenl(,N/2) is the length of

the interactions and its value means that the particles
interact with up to theirnl th nearest-neighbor particles. A
shown in Appendix D, we can obtain an analytical expr
sion for the Lyapunov spectrum derived from the matrix~46!

FIG. 1. Lyapunov spectra of a one-dimensional system w
nearest-neighbor interactions in the case of randomly chosen m
elements. The inset shows an enlarged graph of a small Lyapu
exponent region.
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if all of the nonzero matrix elementss j
[ l ] , j 51,2, . . . ,N, l

51,2, . . . ,nl take the same value.
In this subsection we consider the case where the ma

elements j
[ l ] is chosen randomly, like in the model discuss

at the end of the preceding subsection. Figure 2 is
Lyapunov spectrum normalized by the maximum Lyapun
exponent in the system described by the matrixA5A[nl ]

with the quantitiess j
[ l ] chosen randomly from the regio

(v/2,3v/2) for the case ofnl510, 15, and 20 in the system
consisting of 100 particles (N5100). ~This randomness in
the quantitiess j

[ l ] is adopted to draw all of the figures her
after in this subsection.! In these graphs we took the arith
metic average of the Lyapunov spectra over the randomn
of the quantitiess j

[ l ] . This figure shows that the long rang
interactions separate the Lyapunov spectrum clearly int
part exhibiting stepwise structure and a part chang
smoothly.~The randomness of the quantitiess j

[ l ] is not es-
sential for this separation in the Lyapunov spectrum.
mainly plays the role of smoothening the Lyapunov spectr
in the region of large Lyapunov exponents.! The stepwise
structure of the Lyapunov spectrum appears only in a reg
of small Lyapunov exponents, as suggested in the prece
subsection.

The stepwise region of the Lyapunov spectrum becom
smaller and smaller as the interaction lengthnl of particles
increases.~As a limit of the long range interactions, as show
in Appendix D, we can easily show that in the system, wh
each particle interacts with all the other particles with t
same strength, all of the positive Lyapunov exponents t
the same value.! Besides, the heights of the steps of t
Lyapunov spectrum are approximately proportional to
lengthnl of the interactions. These characteristics are clea
evident in Fig. 3, showing the lengthnl dependence of the
j th positive Lyapunov exponentsl [ j ] , j 591,93,95,97,99 in
the case of 100 particles. In these graphs we also took
arithmetic average of the Lyapunov exponents over the r

h
rix
ov

FIG. 2. Lyapunov spectra of one-dimensional systems with
ferent lengthnl of long range interactions in the case ofN5100.
The three graphs correspond to the casesnl510 ~the circular dots!,
nl515 ~the triangular dots!, andnl520 ~the square dots!, respec-
tively. The inset shows enlarged graphs of a small Lyapunov ex
nent region.
2-6
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domness of the quantitiess j
[ l ] . This figure shows that the

values of small Lyapunov exponents increase with incre
in the interaction lengthnl as long as they are in the regio
of the steps of the Lyapunov spectrum, and if the interact
lengthnl is bigger than a critical value then theirnl depen-
dences are slowed down, meaning that they are in the re
of the Lyapunov spectrum that is changing smoothly.

It may be interesting to investigate the difference betwe
the two parts of the Lyapunov spectrum from the point
view of the eigenstate. Figure 4 is the real eigenstate of
matrix A[nl ] in the case ofnl515 andN5100 with randomly

FIG. 3. Dependence of the long range interaction lengthnl on
the Lyapunov exponentsl [ j ] /l@1# in the case ofN5100. The
graphs with the circular dots, the triangular dots, the square d
the open circular dots, and the open triangular dots correspon
the case ofj 599,97,95,93, and 91, respectively.
05620
e

n

on

n
f
e

chosen quantitiess j
[ l ] . ~Note that we did not take the averag

over the randomness of the quantitiess j
[ l ] to draw this fig-

ure.! The graphs~a!, ~b!, ~c!, and ~d! are the eigenstate
corresponding to the Lyapunov exponentsl [ j ] for j
599,98, j 597,96, j 593,92, and j 591,90, respectively.
These Lyapunov exponents correspond to the triangular
surrounded by the broken lines in the inset of Fig. 2. We c
see clear wavelike structures of approximately sinuso
type in the graphs~a! and ~b!, which correspond to the
Lyapunov exponents composing the steps in the Lyapu
spectrum. The wavelength of the waves in the graph~b! is
half of the wavelength of the waves in the graph~a!. On the
other hand, we cannot recognize such a wavelike structur
the graphs~c! and~d!, which belongs to the Lyapunov expo
nents in the part of the Lyapunov spectrum which is cha
ing smoothly.

It should be noted that the wavelike structure of the eig
states already appears even in the system described b
matrix A5A(0) defined by Eq.~37! with nearest-neighbor
interactions of a constant strength. Therefore the point is
such a wavelike structure of the eigenstates is not destro
by the long range interactions and the random interac
strengths only in the eigenstates that correspond to the s
positive Lyapunov exponents in the steps of the Lyapun
spectrum.

One may regard the long range interactions discusse
this subsection as a kind of high dimensional effect, beca
if particles move in a two- or three-dimensional space th
they can interact with more than two particles, even in ha
core interactions. However, some high dimensional effe
for example, the total momentum conservation in each
thogonal direction and so on, are still missing in the disc

ts,
to
d
d
f

FIG. 4. Eigenstates of matrix
A[nl ] in the case ofnl515 andN
5100: the graph~a! ( j 598,99),
the graph ~b! ( j 596,97), the
graph ~c! ( j 592,93), and
the graph~d! ( j 590,91) for the
Lyapunov exponentl [ j ] . These
Lyapunov exponents correspon
to the triangular dots surrounde
by the broken lines in the inset o
Fig. 2.
2-7
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TOORU TANIGUCHI AND GARY P. MORRISS PHYSICAL REVIEW E65 056202
sions in this subsection. In the following section we consi
high dimensional effects more explicitly.

VI. TWO-DIMENSIONAL MODEL WITH A TRIANGULAR
LATTICE STRUCTURE

In the one-dimensional models discussed in the prece
section, the steps of the Lyapunov spectrum are cause
the periodic boundary conditions, and all of them consist
only two points. In this section we consider a tw
dimensional model, and show that it is possible to get wi
steps than in the one-dimensional model as a high dim
sional effect. Specifically, we concentrate on a model t
has steps consisting of four and eight points, which are
tually found in a square system consisting of many h
disks @32#.

In the two-dimensional system, the position of each p
ticle is specified by a two-dimensional vectorqj , j

51,2, . . . ,Ñ, whereÑ is the number of the particles andN
52Ñ. In such a case the matrixA is a (2Ñ)3(2Ñ) matrix,
and can be represented as a block matrix consisting
232 matricesB( jk), j 51,2, . . . ,Ñ andk51,2, . . . ,Ñ. Here
B( jk)[(Bj 8k8

( jk) ) is given by

B( jk)[S A(2 j 21)(2k21) A(2 j 21)(2k)

A(2 j )(2k21) A(2 j )(2k)
D ~47!

corresponding to the matrix2]2V/]qj ]qk , and its compo-
nents represent the strengths of the interactions betw
components of positions of thej th particle and thekth par-
ticle. The matrixB( jk) is symmetric and the matrixA is also
symmetric in the sense of the block matrix, namely,

Bj 8k8
( jk)

5Bk8 j 8
( jk)

5Bj 8k8
(k j) . ~48!

The diagonal blockB( j j ) is determined by the condition o
the total momentum conservation

(
k51

Ñ

B( jk)50, ~49!

which comes from Eq. ~29! and the relation
(k51

Ñ]2V/]qj ]qk50 and is simply the two-dimensiona
version of the condition~35!. This condition~49! implies that
the Lyapunov exponents include at least two zero com
nents:

l [N21]5l [N]50 ~50!

corresponding to the conservation of the total momentum
To construct a two-dimensional model it is convenient

use a lattice picture, because in the approach of this pa
under the assumption discussed in Sec. IV, the mode
specified by pairs of interacting particles and their interact
strengths. In such a lattice, each lattice site corresponds
particle and a connection between sites means that part
on those two sites can interact with each other as nea
neighbor particles. Now we consider an equilateral triangu
lattice from such a point of view. This situation is motivate
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by the fact that in Ref.@32# the system consists of man
disks that pack in a two-dimensional space as a hexag
close-packed structure in the high density limit. The triang
lar lattice has three directions to connect the sites, and
range the triangular lattice so that it fits within a squa
where one of the sides of the square is parallel to one of
three directions of the triangular lattice, as shown in Fig. 5~a!
where such parallel lines are horizontal. For simplicity w
assume that the number of lattice sites in each horizontal
is equal and is given byN1(.1). We put the number of such
lines as N2, which should be roughly given byN2

'(2/A3)N1.
Next, we introduce the boundary condition for this tria

gular lattice model. For this purpose we assign numb
1,2, . . . ,N1 to the lattice sites~namely, particles! in the first
horizontal row of particles from left to right, and numbe
N111,N112, . . . ,2N1 in the second row and so on unt
the last row numbered (N221)N111,(N221)N1
12, . . . ,N2N1, as shown in Fig. 5~b!. We define the numbe
f 2 j 21 as the number of the particle that has nearest-neigh
interactions with the@2( j 21)N111#th particle, and the
number f 2 j as the number of the particle that ha
nearest-neighbor interactions with the@2( j 21)N111#th,
@(2 j 21)N111#th, and @2 jN111#th particles (j
51,2, . . . ,Int$N2/2%). Here, Int$x% means to take the intege
part of x for any real numberx. We also define the number
gj

(1) and gj
(2) as the numbers of the particles that ha

nearest-neighbor interactions with thej th particle through
the upper-left line and the upper-right line, respectivelyj
51,2, . . . ,N1). ~See Fig. 5~b! for the definitions of the num-
bers f j and gj

(6) .! The numberf j specifies the interaction
between the left side and the right side of the square, and
numbersgj

(6) specifies the interaction between the upp
side line and the lower side of the square. In this section
consider the case that these numbers are given by

f j5 jN1 , ~51!

gj
(6)5~N121!N21 min

kP$1,2, . . .%
$hjk

(6) ;hjk
(6).0%, ~52!

FIG. 5. ~a! The triangular lattice system with a square shape.N1

is the number of particles in a horizontal line, andN2 is the number
of horizontal lines.~b! Numbering of the particles and the bounda
condition in the part surrounded by the square of broken line in~a!.
2-8
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wherehjk
(6) is defined by

hjk
(6)5 j 6IntH 1

2 S N22
161

2 D J 7kN1 . ~53!

The boundary conditions~51! and~52! imply that every line
of the three directions in the triangular lattice is periodic. W
assume the conditiongj

(1)Þgj
(2) so that every particle ha

the six nearest-neighbor particles.
Before giving the matrixA of the triangular lattice mode

including a long range interaction, we consider the ma
A5Ã0 including only the effect of the nearest-neighbor i
teractions of a constant strength. We define the 2N132N1
matricesCl , l 51,2,3,4, each of which is a block matri
consisting of 232 matrices Cl

( jk) , j 51,2, . . . ,N1 , k
51,2, . . . ,N1, by

Cl
( jk)[26Bd jk1B @d j (k11)1dk( j 11)1d j (k2N111)

1dk( j 2N111)#, ~54!

C2
( jk)[B @d jk1d j (k11)1d j (k2N111)#, ~55!

C3
( jk)[B @d jk1dk( j 11)1dk( j 2N111)#, ~56!

C4
( jk)[B$dk[g

j
(1)2(N121)N2]1dk[g

j
(2)2(N121)N2]%, ~57!

whereB is a 232 matrix. The matrixÃ0 is introduced as the
block matrix defined by

Ã051
C1 C2 0̄ 0̄ 0̄ ••• 0̄ C4

C2
T C1 C3 0̄ 0̄ ••• 0̄ 0̄

0̄ C3
T C1 C2 0̄

0̄ 0̄ C2
T C1 C3

0̄ 0̄ 0̄ C3
T C1 �

] ] � �

0̄ 0̄ C1 Cñ

C4
T 0̄ Cñ

T
C1

2 ,

~58!

with the 2N132N1 null matrix 0̄, whereñ is 2 ~3! if N2 is
an odd~even! number.

The matrixA5Ã[nl ] of the triangular lattice model includ
ing the effect of the long range interactions up to thenl th
nearest neighbor interactions is simply given as follows.
consider the matrixÃ08 given by the matrixÃ0 except that

the matrixB in the matrixÃ0 are replaced by the 232 ma-
trices whose matrix elements are positive constants. By u
such a (2N1N2)3(2N1N2) matrix Ã08 we calculate thenl

times multiplication (Ã08)
nl of the matrixÃ08 . The nonzero

elements of the matrixÃ[nl ] are equivalent to the nonzer
elements of the matrix (Ã08)

nl. After determining the non-
05620
x

e

ng

null upper off-diagonal blocksB( jk), j ,k of the matrixÃ[nl ]

satisfying the condition~48! by such a process, the diagon
block B( j j ) and the lower off-diagonal blocksB( jk), j .k of
the matrix Ã[nl ] are determined so that the matrixÃ[nl ] is
symmetric and satisfies the condition~49!. It should be noted
that we could use a similar method to obtain the matrixA[nl ]

including the effect of long range interactions in the on
dimensional model in the preceding section.

We restrict our consideration in the case that the 232
matrix B( jk), which is the block element of the matrixA in
the two-dimensional system, is diagonalized,

B12
( jk)5B21

( jk)50. ~59!

This means that two components of the position of ea
particle do not interact with each other.

Now we calculate the Lyapunov spectrum for such a m
trix Ã[nl ] by using the formula~34!. Figure 6 is the Lyapunov
spectrum normalized by the maximum Lyapunov expon
in such a triangular lattice system in the case ofN1513,
N2515'(2/A3)N1515.01110 . . . and nl53. Here we
chose the nonzero elements in the upper triangle of the
trix Ã[nl ] randomly from the positive region (0.2ṽ,1.8ṽ)
with a ~nonzero! real constantṽ, and took the arithmetic
average over this randomness. As in the one-dimensio
model including the long-range interactions, the Lyapun
spectrum is separated into the part changing smoothly
the part having a stepwise structure, which appears in a
gion of small positive Lyapunov exponents.

A remarkable point in the two-dimensional triangular la
tice model, which the one-dimensional models do not ha
is the wide steps of the Lyapunov spectrum, especially
step consisting of four points and the step consisting of e

FIG. 6. Lyapunov spectrum of the triangular lattice system
the case ofN1513, N2515'(2/A3)N1, andnl53 ~the triangular
dots!. The inset shows enlarged graphs of the part including
stepwise structures in the Lyapunov spectra in the case ofN1513
andN2515 ~the triangular dots! and the case ofN15N2514 ~the
circular dots! for a comparison. The Lyapunov spectrum in the ca
of N15N2514 is shifted by22 in the j direction, so that the
positions of the zero Lyapunov exponents coincide in both
cases.
2-9
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points shown in Fig. 6. To give an explanation for these w
steps, we should notice that in this model we set up a p
odic boundary condition for each of the three directions
the triangular lattice. This boundary condition for each of t
three directions can cause degeneracies in the Lyapu
spectrum like in the one-dimensional cases. Besides, in
model each site of the triangular lattice has two independ
degrees of freedom corresponding to the two dimensiona
of the particles, which can also cause degeneracy in
Lyapunov spectrum due to condition~59!. Therefore we can
get the step consisting of four points corresponding to e
direction of the triangular lattice. Moreover two of the thr
directions~namely, the two directions other than the horizo
tal direction in Fig. 5! have the same numbers of the sites
themselves, so they can cause a degeneracy in the Lyap
spectrum. After all we get the step consisting of four poi
corresponding to the horizontal direction, and the step c
sisting of eight points corresponding to the other two dir
tions. This explanation is partly justified by the fact that t
Lyapunov spectrum in the case ofN15N2 has the step con
sisting of 12 points in the Lyapunov spectrum, shown in
inset of Fig. 6, where we gave the averaged Lyapunov sp
trum normalized by the maximum Lyapunov exponent in
case ofN15N2514 andnl53. Here, except for the number
N1 and N2 we used the same boundary condition and
same randomness for nonzero elements of the matrixÃ[nl ] as
in the case ofN1513 andN2515 in Fig. 6. This Lyapunov
spectrum is shifted by22 in the j direction, so that the
positions of the zero Lyapunov exponents coincide with
cases ofN1513 andN2515. One may also notice that th
parts changing smoothly in the Lyapunov spectrum are
most indistinguishable in both the cases in the inset of Fig

Like in the one-dimensional model, longer range inter
tions lead to a shorter region of stepwise structure in
Lyapunov spectrum in the two-dimensional triangular latt
model. On the other hand, a numerical simulation of
many-disk system showed that the region of the stepw
structure depends on the aspect ratio of the rectangular
tem @32#. This fact suggests that the long range interactio
in the random matrix approach should depend on the as
ratio of the rectangular system.

It should be emphasized that such wide step consistin
four points or eight points are actually found in the tw
dimensional deterministic chaotic system consisting of m
hard-core disks numerically@32#. Besides, we should als
notice that in Fig. 6~and Fig. 2! a warp of the Lyapunov
spectrum appears in a region of large Lyapunov expone
which is also a characteristic of the system consisting
many hard-core disks. However, there are some points
which the triangular lattice model in this section cannot g
enough explanation when compared with the numerically
served features of the Lyapunov spectrum for the determ
istic two-dimensional hard disk system. First, in the nume
cal simulation of the hard-disk system each particle c
interact with almost any other particle in the long time lim
This should correspond to a big number ofnl'N1N2 in the
triangular lattice model, but if we adopt such large numb
for nl then the stepwise structure disappears in the triang
lattice model. In this sense, the model in this section m
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correspond to the high density case, in which each part
mainly interacts with only a few particles surrounding
Second, in the hard-disk system with a square shape the
wise structure of the Lyapunov spectrum seems to be a
etition of the step consisting of four points and the step c
sisting of eight points. On the other hand, in the triangu
lattice model such a repetition of steps cannot be guarant
As the third point, in the triangular lattice model in this se
tion we adopt the boundary condition to make each of
three directions of the triangular lattice periodically, rath
than the periodic boundary condition to make the up s
~the left side! and the down side~the right side! of the square
equivalently, which was adopted in the numerical simulat
of the hard-disk system.

VII. CONCLUSION AND REMARKS

In this paper we have discussed the Lyapunov spectrum
many-particle systems described by a random matrix dyn
ics. We started from the many-particle Hamiltonian mech
ics with no external force field, and introduced the Gauss
white random interactions between the particles. In suc
system the dynamics of the tangent space is expressed
Fokker-Planck equation, which leads to a direct connect
between the positive~and zero! Lyapunov exponents and th
time correlation of the matrix specifying the particle intera
tions. Using this formula, we calculated concretely t
Lyapunov spectra in one- and two-dimensional models sa
fying the total momentum conservation with periodic boun
ary conditions. These models show a stepwise structur
the Lyapunov spectrum in the region of small positi
Lyapunov exponents, which is robust to a perturbation
matrix elements of the particle interaction matrix. The lo
range interactions between the particles lead to a clear s
ration into a part exhibiting stepwise structure and a p
changing smoothly. The part of the Lyapunov spectrum c
taining stepwise structure is clearly distinguished by a wa
like structure in the eigenstates of the particle interact
matrix. In the two-dimensional model we got wider steps
the Lyapunov spectrum than in the one-dimensional mod
especially the steps consisting of four points and the st
consisting of eight points. These wide steps in the Lyapun
spectrum have already been shown numerically in a de
ministic chaotic system consisting of many hard-core dis

One of the important simplifications in this random matr
approach is that in this approach we do not have to refe
the phase space dynamics in order to determine the tan
space dynamics anymore. In general, the matrixR(t) appear-
ing in Eq. ~8! can depend on the phase space dynamics
this kind of separation of the phase space dynamics and
tangent space dynamics cannot be allowed in determin
chaotic systems.

As emphasized in the discussion of the two-dimensio
model, a lattice picture is useful to make a model in t
random matrix approach. Concerning this point it may
interesting to note that some works for the Lyapunov spe
for many-particle systems indicated a similarity between
solid state phenomena and the behavior of the Lyapu
spectra for many-particle systems in a fluid phase@16,40#.
2-10
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STEPWISE STRUCTURE OF LYAPUNOV SPECTRA FOR . . . PHYSICAL REVIEW E 65 056202
We have regarded the random matrix dynamics in t
paper as an imitation of the deterministic chaotic dynam
and reproduced some characteristics of chaotic systems
pecially the stepwise structure of the Lyapunov spec
However, we must not forget that there are some differen
between the chaotic dynamics and the random matrix
namics in this paper. For example, in the random ma
dynamics the movement of particles is not deterministic
stochastic, so that the zero Lyapunov exponents arising f
the initial infinitesimal perturbation along the orbit in th
deterministic chaos do not appear in the random matrix
namics.~Note that we got only the zero Lyapunov expone
corresponding to the total momentum conservation in
models discussed in this paper.! We should also mention tha
in the random matrix approach there is an additional sta
tical average over the randomness of the interactions of
ticles, which does not exist in the deterministic dynami
This causes vagueness in the definition of the Lyapunov
ponents. In this paper we introduced the Lyapunov expon
as the time averagedexponential rate of the randomnes
averaged time evolutionof a neighboring trajectory. This
definition allows us to get a simple connection between
Lyapunov exponents and the time correlation of the inter
tion matrix as shown in Eq.~26!. However, this definition of
the Lyapunov exponent is not proper to discuss the nega
Lyapunov exponents and hence the pairing rule for
Lyapunov spectrum. On the other hand, we could adopt
definition of the Lyapunov exponent as the time average
the randomness-averaged exponential rate of time evolu
of a neighboring trajectory. This definition should be prop
to discuss the negative Lyapunov exponents. The compar
of these two definitions of the Lyapunov exponent is an
settled problem.

One may regard the random matrix approach using
master equation in this paper as one of the analytical
proaches to calculate the Lyapunov exponents. The other
tistical and analytical approach for the Lyapunov expone
is the kinetic theoretical approach of Refs.@39,41#. In this
approach the positive Lyapunov exponents are calculated
ing a Lorentz-Boltzmann equation, while the negati
Lyapunov exponents are calculated using an ‘‘anti-Loren
Boltzmann equation’’ where the collision operator has
opposite sign to the ordinary Lorentz-Boltzmann equati
However, so far this kinetic theoretical approach can o
provide the maximum Lyapunov exponent and t
Kolmogorov-Sinai entropy for dilute gases. As another a
lytical approach to the Lyapunov exponents, one may a
mention the geometric approach@42#. This approach can pro
vide the largest Lyapunov exponent in terms of the aver
and fluctuations of the curvature of the configuration spa

To improve the random matrix approach used in this
per it is essential to know the statistical information for t
interaction matrixR(t). It has already been shown nume
cally that the time average of the matrixR(t) is almost null
in the system consisting of many hard-core disks@43#. This
result justifies the condition~9! in the case ofn51. A similar
investigation of the correlation of the matrixR(t) in deter-
ministic many-particle chaotic systems is one of the imp
tant future problems.
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APPENDIX A: MASTER EQUATION FOR THE
TANGENT SPACE

In this appendix we derive the Fokker-Plank equation~13!
for the tangent vector space. Using the Kramers-Moyal
pansion the dynamics of the probability densityr(dG,t) is
given by

]r~dG,t !

]t
5 (

n51

`

(
j 151

2N

(
j 251

2N

••• (
j n51

2N

~21!n

3
]nJ j 1 j 2••• j n

(n) ~dG,t !r~dG,t !

]dG j 1
]dG j 2

•••]dG j n

, ~A1!

whereJ j 1 j 2••• j n

(n) (dG,t) is defined by

J j 1 j 2••• j n

(n) ~dG,t ![
1

n!
lim
s→0

1

s
^@dG j 1

~ t1s!2dG j 1
~ t !#

3@dG j 2
~ t1s!2dG j 2

~ t !#•••@dG j n
~ t1s!

2dG j n
~ t !#&udG(t)5dG ~A2!

anddG j (t) is the j th component of the tangent vectordG(t)
@37#.

It follows from Eqs.~2!, ~5!, ~6!, and~8! that

dG~ t1s!2dG~ t !5H TQ expFJE
t

t1s

dt L~t!G21J dG~ t !

5 (
n51

` E
t

t1s

dtnE
t

tn
dtn21•••E

t

t2
dt1

3JL~tn!JL~tn21!•••JL~t1!dG~ t !,

~A3!

and

JL~tn!JL~tn21!•••JL~t1!

55
S 0I I /m

R~t1! 0I D for n51,

S F l
(1) 0I

0I F l
(2)D for n52l , l 51,2, . . . ,

S 0I F l
(2)/m

mF l 11
(1) 0I

D for n52l 11, l 51,2, . . . .

~A4!

whereF l
( j ) , j 51,2 are defined by

F l
(1)[R~t2l 21!R~t2l 23!•••R~t1!/ml , ~A5!
2-11
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F l
(2)[R~t2l !R~t2l 22!•••R~t2!/ml . ~A6!

By using Eqs.~9!, ~10!, ~A2!, ~A3!, and~A4! we obtain

J(1)~dG,t ![@J1
(1)~dG,t !,J2

(1)~dG,t !, . . . ,J2N
(1)~dG,t !#T

5 lim
s→0

1

s
^@dG~ t1s!2dG~ t !#&udG(t)5dG

5 lim
s→0

1

sEt

t1s

dt^JL~t!&dG

5~dp1 ,dp2 , . . . ,dpN ,0,0, . . . ,0!T/m, ~A7!

J (2)~dG,t ![@J jk
(2)~dG,t !#5 lim

s→0

1

2s
^@dG~ t1s!2dG~ t !#

3@dG~ t1s!2dG~ t !#T&udG(t)5dG

5 lim
s→0

1

2sEt

t1s

dkE
t

t1s

dt

3^JL~k!dGdGT@JL~t!#T&5S 0I 0I

0I C (2)~dq!
D ,

~A8!

whereC (2)(dq)[@C jk
(2)(dq)# is defined by

C jk
(2)~dq![

1

2 (
a51

N

(
b51

N

D j abkdqa dqb . ~A9!

Here the only nonzero contributions come from then51
term of Eq.~A3!. For generaln, the number ofd functions
from Eq.~10! must be only one less than the number of tim
integrals, to give a nonzero contribution. It is straightforwa
to show that this never happens forn.1. The terms includ-
ing J j 1 j 2••• j n

(n) (dG,t), n53,4, . . . , in theright-hand side of

Eq. ~A1! are negligible because of the Gaussian white pr
erties~9! and~10! of the random matrixR(t). Using this fact
and Eqs.~12!, ~A1!, ~A7!, and ~A8! we obtain the Fokker-
Planck equation~13!.

APPENDIX B: LYAPUNOV EXPONENTS IN THE
RANDOM MATRIX APPROACH

In this appendix we derive the expression~26! for the
Lyapunov exponents from the definition~25!. Transforming
Eqs.~18!, ~19!, and~20! into the equations for the quantitie
Ỹ jk

( l )(t) we obtain

dỸ jk
(1)~ t !

dt
5

2

m
Ỹ jk

(2)~ t !, ~B1!

dỸ jk
(2)~ t !

dt
5

1

m
Ỹ jk

(3)~ t !, ~B2!
05620
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dỸ jk
(3)~ t !

dt
5 (

a51

N

(
b51

N

(
m51

N

(
n51

N

Tj abkDambnYmn
(1)~ t !

5 (
a51

N

(
b51

N

(
m51

N

(
n51

N

Tj abkDamnb

3 (
a851

N

(
b851

N

(
m851

N

(
n851

N

Tm8a8b8n8

3Tn8nmm8Ya8b8
(1)

~ t !

5L jkỸ jk
(1)~ t !, ~B3!

where we used Eqs.~12!, ~21!, ~22!, and ~23!. Equations
~B1!, ~B2!, and~B3! lead to

d3Ỹ j j
(1)~ t !

dt3
5

2L j j

m2
Ỹ j j

(1)~ t !, ~B4!

d2Ỹ j j
(1)~ t !

dt2
5

2

m2
Ỹ j j

(3)~ t !, ~B5!

dỸ j j
(1)~ t !

dt
5

2

m
Ỹ j j

(2)~ t !. ~B6!

It is noted that Eq.~B4! is the differential equation only for
the quantityỸ j j

(1)(t).
If the quantityL j j is zero, then the quantityỸ j j

(1)(t) is a
bilinear function of timet so that the Lyapunov exponen
defined by Eq.~25! gives zero, namely, Eq.~26! is correct in
this case. In the case ofL j j Þ0, noting that the functions
exp@(2Lj j /m

2)1/3t exp(2pki/3)#, k50,1,2 are special solu
tions of Eq.~B4!, we obtain the general solution

Ỹ j j
(1)~ t !5V j

(1) exp~Kj t !1ReH ~V j
(2)2 iV j

(3)!

3expFKj t expS 2

3
p i D G J

5V j
(1) exp~Kj t !

1FV j
(2) cosSA3

2
Kj t D 1V j

(3) sinSA3

2
Kj t D G

3expS 2
1

2
Kj t D ~B7!

of Eq. ~B4! for the real functionỸ jk
(1)(t) whereKj is defined

by

Kj[S 2L j j

m2 D 1/3

. ~B8!
2-12
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HereV j
(k) , k51,2,3 are real constants and are connecte

the initial condition as

V j
(1)5

1

3 F Ỹ j j
(1)~0!1

2Ỹ j j
(2)~0!

mKj
1

2Ỹ j j
(3)~0!

~mKj !
2 G , ~B9!

V j
(2)5

2

3 F Ỹ j j
(1)~0!2

Ỹ j j
(2)~0!

mKj
2

Ỹ j j
(3)~0!

~mKj !
2G , ~B10!

V j
(3)5

2

mKjA3
F Ỹ j j

(2)~0!2
Ỹ j j

(3)~0!

mKj
G , ~B11!

by using Eqs.~B5!, ~B6!, and~B7!. By substituting Eq.~B7!
into Eq. ~25! we obtain

l j5
Kj

2
5F L j j

~2m!2G 1/3

, ~B12!

namely, Eq.~26!.
Equations~B5! and~B6! imply that the quantitiesỸ j j

(2)(t)
and Ỹ j j

(3)(t) are given by taking the first and second deriv
tive of the quantityỸ j j

(1)(t) with respect to the timet, respec-
tively. This fact leads to the relation

lim
t→`

1

2t
ln

Ỹ j j
(1)~ t !

Ỹ j j
(1)~0!

5 lim
t→`

1

2t
ln

Ỹ j j
(2)~ t !

Ỹ j j
(2)~0!

~B13!

5 lim
t→`

1

2t
ln

Ỹ j j
(3)~ t !

Ỹ j j
(3)~0!

.

~B14!

Namely, we get the same Lyapunov exponents as in Eq.~25!
through the equations limt→1`(2t)21 ln@Ỹj j

(k)(t)/Ỹj j
(k)(0)#, k

52,3.

APPENDIX C: LYAPUNOV EXPONENTS FOR
ONE-DIMENSIONAL MODELS WITH THE NEAREST-

NEIGHBOR INTERACTIONS

In this appendix we give the derivation of Eqs.~38! and
~39! from Eqs.~34! and ~37!. We also show Eqs.~41! and
~42! in the case ofA5A(0)1«A(1).

We define the discretized Fourier-transform matrixF
[(F jk) by

Fkl[
1

AN
expS 22p i

kl

N D , ~C1!

which is an unitary matrix:F†F5FF†5I with the super-
script † representing the Hermitian conjugate of the mat

First, it follows from Eqs.~37! and ~C1! that
05620
to

-

.

(
a51

N

Aj a
(0)Fak5

v

AN
$22 exp~22p i jk /N!

1uN ju j 2 exp@22p i ~ j 21!k/N#

1u (N21) ju j 1 exp@22p i ~ j 11!k/N#

1uN ju jN exp@22p i ~ j 2N11!k/N#

1u1 ju j 1 exp@22p i ~ j 1N21!k/N#%

5ak
(0)F jk , ~C2!

whereu jk is defined by

u jk[H 1 in j >k,

0 in j ,k,
~C3!

and satisfies the relationsu jkuk j5d jk and uNnunl
1u ( l 21)nun151 for any integerlP$2,3, . . . ,N# and any in-
teger nP$1,2, . . . ,N%. Here thekth eigenvalueak

(0) of the
matrix A(0) is given by

ak
(0)522vS 12cos

2pk

N D . ~C4!

By using the formula~34! for the eigenvaluesaj5aj
(0) given

by Eq. ~C4! we obtain Eqs.~38!. The eigenvalues of the
matrix A(0) have degeneracies because of the relationaN2 j

(0)

5aj
(0) in j ,N/2, so we obtain Eq.~39!.

Equation~C2! implies that the matrixA(0) is diagonalized
by using the matrixF: (F†A(0)F) jk5aj

(0)d jk . The eigenvec-
tor xj

(0) of the matrixA(0) corresponding to the eigenvalu
aj

(0) is represented as

xj
(0)5~F1 j ,F2 j , . . . ,FN j!

T, ~C5!

so that we have the relationA(0)xn
(0)5aj

(0)xn
(0) . This set of

eigenvectors satisfies the completeness condition and is
malized, namely,(a51

N xa
(0)xa

(0) †5I andxj
(0) †xk

(0)5d jk .
Second, we expand thej th eigenvalueaj of the matrix

A5A(0)1«A(1) in the small parameter«, namely,aj5aj
(0)

1«aj
(1)1•••, and consider the first order correction«aj

(1)

by using the well-known perturbation theory for a degener
system. We introduce the eigenstatexj of the matrixA cor-
responding to the eigenvalueaj , and expand it with the com
plete set$xl

(0)% l of the vectors,

xj5 (
a51

N

cj axa
(0) , ~C6!

with the constantcj a[xa
(0)†xj . The relationAxj5ajxj is

translated into the equation

(
a51

N

@~ak
(0)2aj !dka1«Wka#cj a50 ~C7!

for the coefficients$cjk% j ,k and the eigenvalueaj with the
quantity
2-13



r-

r
ts

r

-
h

ate

the
irst

s

acts
is

ero

TOORU TANIGUCHI AND GARY P. MORRISS PHYSICAL REVIEW E65 056202
Wjk[xj
(0) †A(1)xk

(0) . ~C8!

We expand the coefficientcjk by the small parameter«,
cjk5cjk

(0)1«cjk
(1)1•••. Now we calculate the first order co

rections«aj
(1) and «aN2 j

(1) of the eigenvaluesaj and aN2 j ,
respectively, which have a degeneracy in the zeroth orde
the parameter«. For this purpose, instead of the coefficien
$cjk% j ,k appearing in Eq.~C7! it is enough to consider the
zeroth order coefficients$cjk

(0)% j ,k , which are zero except fo
cj j

(0) , cj (N2 j )
(0) , c(N2 j ) j

(0) , and c(N2 j )(N2 j )
(0) . This leads to the

equation

DetS 2a(1)1Wj j Wj (N2 j )

W(N2 j ) j 2a(1)1W(N2 j )(N2 j )
D 50 ~C9!

for a(1), whose solutions give the eigenvaluesaj
(1) andaN2 j

(1) .
We can solve Eq.~C9! and obtain

a(1)5
Wj j 1W(N2 j )(N2 j )

2

6AS Wj j 2W(N2 j )(N2 j )

2 D 2

1uWj (N2 j )u2,

~C10!

noting the relationWk j5Wjk* with the superscript * repre
senting the complex conjugate of the complex number. T
eigenvalueaN

(0) has no degeneracy so we simply haveaN
(1)

5WNN . If the numberN is even, then the eigenvalueaN/2
(0)

has no degeneracy, so we also haveaN/2
(1)5W(N/2)(N/2) in this

case.
By using Eqs.~40!, ~C1!, ~C5!, and~C8! we obtain

Wkl52@12exp~22p ik/N!#

3@12exp~2p i l /N!#N213 (
a51

N

xa exp@2p ia~k

2 l !/N#. ~C11!

Especially we derive

Wkk52u12exp~22p ik/N!u2x̃05
x̃0

v
ak

(0)5W(N2k)(N2k) ,

~C12!

Wk(N2k)52@12exp~22p ik/N!#2x̃k ~C13!

from Eqs.~43!, ~C4!, and~C11!. By substituting Eqs.~C12!
and ~C13! into Eq. ~C10! we obtain

aj
(1)5

aj
(0)

v
~x̃01ux̃ j u!, ~C14!

aN2 j
(1) 5

aN2 j
(0)

v
~x̃02ux̃ j u! ~C15!
05620
of

e

in the case ofj ,N/2, where we used the relationuWj (N2 j )u
5ux̃ jaj

(0)/vu and numbered so that we obtain (aj
(1)

2aN2 j
(1) )v/aj

(0)>0. By using Eq.~C12! we also obtainaN/2
(1)

5x̃0aN/2
(0) /v in the case of the numberN to be even, and

aN
(1)50 for the first order correction to the nondegener

eigenvalues of the matrixA(0). By applying the formula~34!
to the case ofaj5aj

(0)1«aj
(1)1O(«2) with the quantityaj

(1)

given by Eq.~C14! or ~C15!, we obtain Eqs.~41! and ~42!.

APPENDIX D: LYAPUNOV EXPONENTS FOR
ONE-DIMENSIONAL MODELS WITH LONG RANGE

INTERACTIONS OF A FIXED STRENGTH

In this appendix we calculate the Lyapunov spectra for
systems with long range interactions of a fixed strength. F
we consider the case described by the matrixA5Ā[nl ]

[(Ājk
[nl ] ) defined by

Ājk
[nl ]522nlv̄d jk1v̄(

l 51

nl

@d j (k1 l )1dk( j 1 l )1d j (k1N2 l )

1dk( j 1N2 l )#, ~D1!

with nl,N/2 and a~nonzero! real constantv̄. It should be
noted that the matrixA[nl ] given by Eq.~46! is attributed into
this matrix Ā[nl ] in the case ofs j

[ l ]5v̄. The matrixĀ[nl ] is
diagonalized by the matrixF defined by Eq.~C1!, and we
obtain the relation (F†Ā[nl ]F) jk5āk

[nl ]d jk with the eigen-

value ā j
[nl ][22v̄@nl2( l 51

nl cos(2pjl /N)#. By applying the

formula ~34! to the eigenvalueaj5ā j
[nl ] we obtain the

Lyapunov exponent

l j5U v̄
m
U2/3Fnl2(

l 51

nl

cosS 2p j l

N D G2/3

. ~D2!

The Lyapunov exponents given by Eq.~D2! satisfies the re-
lation l j5lN2 j in j ,N/2, so the Lyapunov spectrum of thi
system has a stepwise structure.

Second we consider the case that each particle inter
with all the other particles with the same strength. This
described by the matrixA5Ā[N/2][(Ājk

[N/2]), which is de-
fined by

Ājk
[N/2][2v̄~12Nd jk!, ~D3!

namely, the matrix whose off-diagonal elements are nonz
and equal each other. The matrix~D3! is diagonalized as

~F†Ā[N/2]F ! jk522Nv̄~12d jN!d jk ~D4!

by using the matrixF defined by Eq.~C1!, so the eigenvalues
of the matrix Ā[N/2] are 22Nv̄ and 0. By substituting the
2-14
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eigenvalues of the matrixA5A[N/2] in the formula~34! we
obtain the Lyapunov spectrum as

l [ j ]5H UNv̄

m
U2/3

in j 51,2, . . . ,N21,

0 in j 5N,

~D5!
-

-

in

05620
namely, the shape of positive Lyapunov spectrum in this s
tem is just in a straight horizontal line. It should be noted th

the quantityv̄ may depend on the numberN of the particles
in general. Therefore the consideration in this appendix is
enough to discuss the particle number dependence of
maximum Lyapunov exponent.
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