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Stepwise structure of Lyapunov spectra for many-particle systems
using a random matrix dynamics
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The structure of the Lyapunov spectra for the many-particle systems with a random interaction between the
particles is discussed. The dynamics of the tangent space is expressed as a master equation, which leads to a
formula that connects the positive Lyapunov exponents and the time correlations of the particle interaction
matrix. Applying this formula to one- and two-dimensional models we investigate the stepwise structure of the
Lyapunov spectra that appear in the region of small positive Lyapunov exponents. Long range interactions lead
to a clear separation of the Lyapunov spectra into a part exhibiting stepwise structure and a part changing
smoothly. The part of the Lyapunov spectrum containing the stepwise structure is clearly distinguished by a
wavelike structure in the eigenstates of the particle interaction matrix. The two-dimensional model has the
same step widths as found numerically in a deterministic chaotic system of many hard disks.
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[. INTRODUCTION tually coupled map systerf24]. These works suggest the
possibility of getting information about the system from the

Chaos is characterized by a rapid expansion of a smaBtructure of its Lyapunov spectrum. The Lyapunov spectrum
initial error, and the Lyapunov exponent, which is defined adias also been of interest for the number dependence of the
the time averaged exponential rate of the time evolution oMaximum Lyapunov exponent in particle systef6sl9,25—
infinitesimal perturbations of the dynamical variables, is in-27], and the Kaplan-York Lyapunov dimensi¢28—31.
troduced to express such characteristics quantitatively. The One of the characteristics of the Lyapunov spectrum,
Lyapunov exponent is used to discuss some statistical prop¥hich has been shown recently in systems consisting of
erties of many-body systente.g., the mixing propertyltis ~ many hard disks, is its stepwise struct(fe},15,19,32,3B
also known that the Lyapunov exponents are connected t§UCh a stepwise structure appears in the dlstlnqt region .Of
the amount of information of the systente.g., the small positive Lyapunov exponents. Corresponding to this

Kolmogorov-Sinai entropy and to the transport coefficients stepw_lse structure.are the so called Lyapunov .modes, a
‘ : wavelike structure in the tangent space of each eigenvector
(e.g., conductance and viscosifyl—3].

. of a degenerate Lyapunov exponent, that is, for each step-
. ST . . €Guise structure. An explanation of the stepwise structure of
tion of the |r?f|.n!te5|.mal perturbatlon. of the dynamical vari- the Lyapunov spectrum due to symmetries of the system was
ables at an initial time, so we obtain a Lyapunov exponenteq “ysing two-dimensional periodic orbit moddi]. On

for each independent dlrectlo_n in the system. The sorted s@te other hand, explanations for the Lyapunov modes were
of such Lyapunov exponents is the so called Lyapunov SP€Gsyggested using a random matrix approach for a one-
trum, and has been the subject of study in many chaotigimensional mode[34] and more recently using a kinetic
particle systems. For example, the thermodynamic limit Oftheoretica| approaclﬁgs]_ The small Lyapunov exponents
the Lyapunov spectrum, that is, that the spectrum retains itSorrespond to slow relaxation processes in the equilibrium
shape as the number of particles increase is discussed usisgate, so these results suggest the possibility of characterizing
numerical evidenc@4,5], random matrix approach¢6—8§|, the macroscopic behavior in many-particle systems from a
a periodic orbit approacf®], and mathematical arguments microscopic point of view.

[10,11]. Some works showed a linear behavior of the This paper has two main purposes. First we consider the
Lyapunov spectrum in one-dimensional models with nearestdynamics of the tangent space in dynamical systems with a
neighbor interactiong4—8], although this conjecture is random interaction between the particles. Different from the
modified in weak chaotic systemi$2,13. The effect of the other random matrix approaches for the Lyapunov spectrum
rotational degrees of freedom of molecules on the Lyapunoy6,8,34,36, which use discretized models in time, we con-
spectrum was investigated in a model consisting of diatomisider the continuous dynamics in time and derive a method
molecules, which showed an explicit separation of the rotato calculate the Lyapunov spectrum from a master equation
tional and translational degrees of freedom if the departuréechnique. Using this method the Lyapunov spectrum is di-
from sphericity is small enougi4,15. The Lyapunov spec- rectly connected to the correlations of the particle interaction
tra of systems in nonequilibrium steady states were investimatrix. As the second purpose we discuss the stepwise struc-
gated in Refs[16—19 with the discovery of the conjugate ture of the Lyapunov spectrum using this random matrix ap-
pairing rule for some systems with isokinetic thermostatgproach. We consider one- and two-dimensional models satis-
[20-23. Avoided crossings and level repulsion in the fying the total momentum conservation with periodic
Lyapunov spectrum, similar to the behavior of the energyboundary condition. These models show a stepwise structure
levels in a quantum chaotic system, was discussed in a mwf the Lyapunov spectra only in a region of small positive
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Lyapunov exponents. We discuss the robustness of the stepthere the matrixM (t,tg) is defined by
wise structure against perturbations in the matrix elements of

the particle interaction matrix. The long range interactions -
between the particles lead to a clear separation into a part of M(t,to)=T exr{JJt
the spectrum exhibiting stepwise structure and a part chang-
ing smoothly with exponent number. We also find a wavelike . . : . =
structure in the eigenstates of the particle interaction matri>¥."Ith the positive t|me_-order|ng operatdr with the latest
in the part of the Lyapunov spectrum containing stepwiseiMe 0 the left. Equatiori6) leads to

structure. As a high dimensional effect we show that in the .
two-dimensional model we get wider steps in the Lyapunov M(t,to)‘1=fexp{ _Jf dsL(s)
spectrum, such as steps consisting of four and eight degen- t

erate exponents, rather than simply two exponents as in the

one-dimensional models. The step widths of four and eighfyith the negative time-ordering operatdr with the latest
exponents are actually observed in the numerical simulatiofme to the right, so that the Hamiltonian phase volume is

tds L(s)

0

: (6)

=—JIM(t,tp)"3, (7)

0

of the many-hard-core-disk syst€i32]. preserved, namelyDet{M (t,to)}|=1.
For simplicity, we consider the case of no external force
Il. RANDOM MATRIX DYNAMICS OF THE field, so the HamiltonianH(I'(t),t) is represented as
TANGENT VECTOR H(T(t),t)=|p(t)|%(2m)+ V(q(t),t), wherem is the mass

of the particle and/(q(t),t) is the potential energy at tinte

We consider a Hamiltonian system whose state at tirne In this case the matrik (t) is given by

described by the I8 dimensional phase space vecloft)
=(q(t),p(t))" with the spatial coordinate vecta(t), the

momentum vectop(t), and the transpose operatidn The L(t)= ( —RMH 0 ) (8)
dynamics of the phase space is described by the Hamiltonian 0 I/m
equation

whereR(t)=(R,4(t)) is aNXN symmetric matrix defined
dr¢)  _oH@(t),t) by — d2V(q(t),t)/dq(t)dq(t). The effect of particle interac-
T art) (1) tions is taken into account through the matRkt).

Now we move from considering particular Hamiltonian
with the HamiltonianH (I'(t),t). Here we allow an explicit model systems to introducing a random interaction between
time dependence of the Hamiltonian, ahds the 2N X 2N the particles. We consider the case where the particle inter-
matrix defined by actions occur randomly enough, so that the matrix elements

Rup(t), a=1,2,... N, B=1,2,... N can be regarded as a

0o 1 Gaussian white randomness in the sense of
= o) 2

(Rayp, (1R g (t2) - *Roy 5 (t2n-1))=0, (9)
wherel is theN X N identical matrix and Qs theN XN null
matrix. It should be noted that the matisatisfies the con- <Ralﬂl(t1)Ra2B2(t2)’ . ‘RaZnﬁZn(th)>

ditions JT= —J andJ?= — | with the 2N x 2N identical ma-

trix 1. _ E D D ...D
The dynamics of the tangent vectdF(t) as a small de- e Pl PR P Py P P VS PR P PR P
viation of the phase space vector is described by the linear-
ized equation X 5(t11_tiz) 5(t13_ti4)' a 5(tjzn-1_tizn) (10
dor'(t) for any integem, where we take the sum over only the per-
qr LI @ mutation Pg: (1,2,....20)—(j1,j2s .. -.j2n), and the
bracket(- - -) means the ensemble average over random pro-
of the Hamiltonian equatiofl) whereL (t) is defined by cesses. Her®j,, is a fourth rank tensor and is assumed to
be constant in the rest of this paper.
PHT(1),1) In order to justify thes function relaxation(10) of the
L(t)EW' 4 time correlations as a description of a deterministic chaotic

system whose characteristic correlation time scale is not in-
The matrixL(t) is symmetricL(t)=L(t)". At this point we finitesimal, it may be necessary to modify the time scale by a
note that an equation equivalent to Eg) can also be ob- finite correlation time. Such a change of the time scale mul-
tained for a system whose dynamics is not derivable from &plies the Lyapunov exponents by a factor. However, in this

Hamiltonian. paper we will only consider the ratios of the Lyapunov ex-
Equation(3) is formally solved as ponents, especially the Lyapunov exponents divided by the
largest Lyapunov exponent, and for these quantities the prob-

SI'(t)=M(t,tg) oT'(tg), (5) lem of the time scale no longer appears explicitly. It may also
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be noted that the random particle interactions expressed by Y(g)(t)zij Pt (16)
Egs.(9) and (10) can be derived formally from a harmonic .

oscillator interaction potential with time-dependent Gaussiafyhere(- - - ), denotes the average over the probability den-

white-noise amplitude_s._ N sity p(oI',t) at time t: (---);=[déT'p(sT,t)---. These
The tensoDy, satisfies the condition guantities consist of elements of the averaged matrix
ST'6I'T),, and satisfies the condition
Dinjk=Djkin (11 ( n

because the  equation Dy, 8(s—t)=(Rjk(S)Rin(t)) YR=Y(t). (17)
=(Rin()Rjk(s))=Dynjx8(s—t) is satisfied at arbitrary _ N

timess andt. The symmetric property of the matriX(t) also ~ Equation(13) connects these quantities as

imposes the conditions

dy@P) 2

D jkni= Dkjin=Djxin (12 (ljt ZEY}E)(U, (18

for the tensoD jp . 5
Under the Gaussian white conditiof® and (10) for the dYPt) 1 3)

matrix R(t), the dynamics described by E@) for the tan- dt ﬁij (v, (19
gent vector can be regarded as a stochastic process. Now we
consider the description of this stochastic process by a mas- ay@w NN
ter equation for the probability densip( dI',t) for the tan- kA7 E E DjakﬁY(lB)(t), (20)
gent vector space in which( 5T',t)dsT is introduced as the dt a=1p=1 “

probability of finding a tangent vectofI' in the region N _
(8T, 6T+ d6T). By applying the Kramers-Moyal expansion Where we assumed the probability dengifyl’,t) to be zero
to the dynamicg3) with the randomness given by Eq®)  at the boundary of the tangent space, and used @ds.

and (10) we obtain (12), and(17) to derive Eq.(20).
Now we introduce a fourth rank tensbyy, satisfying the
ap(ST,1) Nosp, ap(sTit) & NN condition
T &A™ o, A
a=1 o a=1B=1 p=1 N N
N (8T t) > B; Taiks T pnla= 851 (2D)
XZIEDa#ﬁV5qa5qu. (13)

. . . so that we obtain
Equation (13) is a master equation for the tangent vector

8T=(69,6p)" with 89=(48q;,60,, ...,6qy)" and &p N N N N

=(8py1,p,, ...,5pn)T, especially the type of the equation > 2 2 2 TiwpPaprsTovu = Ak s (22)
called the Fokker-Plank equation because its right-hand side  «=1 =1 #=1v=1

includes up to the second derivative of the probability den- o .
sity with respect to the variables. The derivation of Ep) with the real second rgnk tensdr, satisfying the condition
is given in Appendix A. We should notice that the first term Aj;=0 [38]. [Concerning Eqs(21) and (22), for example,
on the right-hand side of Eq13) has the same form as the the existence of the real tensby, satisfying Eq(22) simply
corresponding term in the Liouville equation describing non-comes from the fact that by the conditi¢t?) we can regard
interacting particle systems, because the dynamics of thie quantityD;y, as the matrix elemeri,, ; n,, 1y Of the
phase space point and the tangent space point coincide in the&x N? real symmetric matrixDE(Dyl(j,n)h(kJ)) where

noninteracting particle system. The characteristics of the sys; —,, (j k), n=1,2 are functions fronje {1,2, . .. N} and
tem are introduced through the fourth rank teni3qr, ;, and ke{l1,2,...N} to ype{1,2,... N2.] We will discuss an

a boundary condition for a solution of E€L3). example of the tensor§, and A, in the following sec-
tion. By using the tensof,, we transform the quantities
ll. LYAPUNOV SPECTRUM IN THE RANDOM Y1) to YP(1) as
MATRIX APPROACH
N N
In this section, using the Fokker-Plank equati@d) for ) ey 0
the tangent vector we investigate the absolute values of the Y (t)=z,l ;;2::1 TiapY ap(l)- 23
tangent vectors, whose asymptotic behaviors lead to the
Lyapunov exponents. N B The inverse transformation to derive the quanfiffy)(t)
We introduce the quantiti€gj/(t), 1=1,2,3 as from the quantityYﬂ')E,(t) is simply given by
Y (t)=(80; 0} (14) NN
YO (t)= T i Y it 24
YP(O=((500p+ dadpp)i2, (19 RO=2, 2, ToaeXub) 29
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noting the relatior(21). Especially we should notice the re- gernandA=(A;y) is a time-independert X N matrix. The

lations (| 8q|?)==N_,Y®(t) and (|6p|?)=3"_,Y®)(t)  matrix A must be a symmetric matrix,

under the conditiorE}y_; T; = Six -
Noting that the quantity’ {)(t) is the square of the am-
plitude of the jth spatial component of an orthogonal- pecause the matriR(t) is symmetric.

transformed tangent vector, we introduce the positige The assumption29) simplifies our considerations, be-
zerg Lyapunov exponents; as cause in this case the tenddy,, is represented as the mul-
= tiplication of the matrix elemerA;, with A;,. Thus
1 Y P ik in

M JTontlnYJ(jl)(O) ' @9 Dikin=AjkAin (31
namely, as the exponential rate of the time evolution of theand the conditiong11) and (12) for the tensorDjy, are
average of magnitude of the infinitesimal deviation of theautomatically satisfied under the conditi@®0). The condi-
phase space orbit in the long time limit. The introduction oftion (30) also implies that the matri is diagonalizable
Lyapunov exponents by the spatial coordinate part ¢aly  Using_an orthogonal matrixU=(Uj,) satisfying UTU
the momentum part onlof the tangent vector has been used=UUT=1, namely, UTAU);,=a;5; with real eigenvalues
previously in Refs[26,39. a;, 1=1,2,... N of the matrixA. The fourth rank tensor
As shown in Appendix B, the Lyapunov exponents areTjqn iS constructed as
simply given by

1/3 Tikin=UkjUin, (32

A
i~ — 2 (26)  which satisfies the conditionf21), (22), and =8_;T;,ux
(2m) = Jjx . Here the second rank tensar, is represented as

using the quantity\ ; introduced in Eq(22). Equation(26)
is the key result of this paper. This equation connects the
Lyapunov exponents directly with the tensdy, represent-  which satisfies the conditiond ;;=0. Equations(26) and

ing the strength of correlation of the particle interactions, anc{33) lead to the expression of the Lyapunov exponents as
also shows the fact that in a system described by the random

matrix dynamics the Lyapunov exponents are independent of
the initial condition like in the deterministic chaos. It should Aj=
be noted that the Lyapunov exponentsgiven by Eq.(26)
are the same with the quantities derived from the equationafter all, under the assumptio(29) the calculation of the
lim_...(2t) 1 In[Y{(t)/Y(%(0)], k=2,3 in this approacksee  Lyapunov spectrum is attributed to the eigenvalue problem
Appendix B. of the matrixA.

We sort the Lyapunov exponenis ,\,, ... Ay SO that

they contain a decreasirigr equa) sequence, and introduce \; ONE-DIMENSIONAL MODELS AND STEPS OF THEIR

Ajk=aja, (33

aj 2/3

2m (34

the SGt{)\[l],K[Z], Ce ,)\[N]} satisfying the condition LYAPUNOV SPECTRA
NN NN =N NG N, (27) In this section we consider simple one-dimensional mod-
A= 2= . =\ IN] (28) els and calculate their Lyapunov spectra using the formula

given in Sec. lll under the assumptions discussed in Sec. IV.
This sorted set of the Lyapunov exponents is called théV/e are generally interested in which ingredients of the
model system lead to particular features of the Lyapunov
Lyapunov spectrum. . . . .
spectra. We are especially interested in models that satisfy
IV. A SIMPLIFICATION the to_tal momentum conservation and_show stepwise struc-
o _ tures in their Lyapunov spectra. Numerically the observation
Before considering the Lyapunov spectra in concreteof Lyapunov modes is associated with the systems with a
models using the formula given in the preceding section, wetepwise structure of their Lyapunov spectrum, such as the
discuss an assumption to simplify the model calculations. Wenany-hard-disk system of Refgl4,15,19,32,3B

consider the case where all matrix elememg(t), ] We construct a model consisting bf particles in a one-
=1,2,...Nandk=1,2,... N have the same time depen- dimensional space. In this case the off-diagonal matrix ele-
dence, namely, mentA;,, j #k represents the strength of the interaction be-

R (D) =1 (DA. (29 tween thejth particle and thekth particle. The diagonal
(D= (DA, matrix elementA;; is determined by the total momentum

wherer(t) is a normalized Gaussian white randomness irfonservation that imposes the condition

the sense ofr (t{)r(ty)- - -r(ton_1))=0 and{r(ty)r(ty)- -

'r(tzn)>:Epd5(tjl_tj2) 5(t13_tj4) e 5(t12n_1_tj2 ) for

any inte-

n

N
> Ap=0 (35)
k=1
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for the matrixA. Equation(35) is derived from Eq(29) and o

the equatiorE_,R;(t) =0 satisfied at any time Using the A= 3610 (xot+Ix;D), (41)

formula (34) this condition implies that thél dimensional

vector, whose components are equal, is an eigenstate of the o\ (0)

matrix A corresponding to the eigenvalue 0, so we obtain )\F\lljj: 3’:‘0_1 (Xo— |;(J.|), (42)
AN =0, (36)

in the case of <N/2, Where}}j is defined by

namely, there is a zero Lyapunov exponent corresponding to N o
; ~ 1 4miaj
the conservation of total momentum. _ - 2 43
Xi= N Xa €X N . ( )

A. One-dimensional model with a stepwise structure of its

Lyapunov spectrum [See Appendix C for the derivations of Edd1) and(42).]

_ _ _ Here we numbered so that we obtaix ("~ {2 )=0. It
As a first step, we consider the case where each particle ~ .
. 2 i . . may be noted that the quantify, in Egs.(41) and (42) is
interacts only with its nearest-neighbor particles with theSim lv the arithmetic average of the coefficie )
same strength of interaction. We impose periodic boundary Py e PPN 9 %,(ll)
conditions, namely, that the particles are on a one—1.2....Ni xo=N""2j_x;. We also obtain Ay
dimensional ring structure. This situation is described by the=2\ O)xo/(3w) if the numberN is even, anc\{M'=0 for
matrix A= A= (A) defined by the first order correction to the nondegenerate Lyapunov ex-
ponents.
A,(E)Ew[ =28kt Ok 1) T O+ kT Sjk-N+1)T Ok(j-N+1)] Equationg41) and(42) tell us about the robustness of the
(37) stepwise structure of the Lyapunov spectrum appearing in
_ ) the nonperturbed system against the perturbation. To discuss
with a (nonzerg real constanty. We can calculate the eigen- this point we consider the deviatidin;— \y_;| of the two

values of the matriA(®) (see Appendix C for the calculation points in thejth step of the Lyapunov spectrum, which is

detail9, and obtain the Lyapunov exponents=\{" as given by
|w] 27n\ %3 4| ey,
)\S‘IO): T 1_COST (38) |)\j_)\N—j|:§ Tj)\J‘FO(Sz) (44)
It is important to note that the Lyapunov exponents given byin the case of <N/2. Equation(44) implies that the degen-
Eq. (38) satisfy the conditions&&o):O and eracies, namely, the stepwise structure of the Lyapunov spec-
trum is removed by the perturbatiarA(®), but their devia-
)\J(O):)\ﬁ’jj (390 tions are small in a region of small Lyapunov exponents

rather than in a region of large Lyapunov exponents, as far as

for j<N/2, namely, the Lyapunov spectrum has degenerathe quantity}j is almostj independent. In other words, this
cies. In other words the spectrum has a stepwise structureonsideration suggests that the stepwise structure of the
The maximum Lyapunov exponent is given by|¢2/m)?®  Lyapunov spectrum is robust in the region of small
whenN is even or{|w|[ 1+ cos@/N)J/m?® whenN is odd.  Lyapunov exponents. It should be emphasized that this is
consistent with the numerical results of the Lyapunov spec-
B. Robustness of the stepwise structure of the Lyapunov trum in a many-hard-disk model, which shows the stepwise
spectrum to a perturbation structure of the Lyapunov spectrum only in a region of small
) o Lyapunov exponent$14,15,19,32,3B By using Egs.(41)
_Next we consider the case where each particle interactgny (42) we can also discuss a perturbational effect in a
with its nearest-neighbor particles by slightly different |nter-g|0ba| shape of the Lyapunov spectrum. Equati¢#y and

action strengths. This situation is described by the makrix (42) lead to the shift of thgth step of the Lyapunov spec-
=A0+ A with & a small parameter and the matd"  ,m as
defined as

N+ AN 2
j N J_)\(O)zﬁ)\jg-{—O(sz) (45

AJ(I%): —(XjF Xj+1) Skt X6 k+ 1) XkSk(j+1)
2 1)

+ X1L6j(k-N+1) T Sk(j—n+ 1)) 409 , _ o ,
in the casg <N/2. Equation(45) implies that in the case of
wherey;, j=1,2,... N+1 are real constants satisfying the y,e/w>0 (yoe/w<0) the perturbationeA®™) makes the
condition yy+ 1= x1. In this case we can calculate the eigen-slope of the Lyapunov spectrum mditess steep than in the
values of this matriXA to first order in the small parametey  nonperturbed case.

and obtain the Lyapunov exponents,=\{+e\(V Now we discuss the robustness of the stepwise structure
+0(&?) in the expanded form by the parametewith the  of the Lyapunov spectrum against perturbation in a slightly
guantities different way, in which the fluctuations of the matrix ele-
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FIG. 1. Lyapunov spectra of a one-dimensional system with
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FIG. 2. Lyapunov spectra of one-dimensional systems with dif-

nearest-neighbor interactions in the case of randomly chosen matrperent lengthn, of long range interactions in the case éf=100.
elements. The inset shows an enlarged graph of a small Lyapunovhe three graphs correspond to the cageslO (the circular dots

exponent region.

n,= 15 (the triangular dots andn,= 20 (the square dojsrespec-
tively. The inset shows enlarged graphs of a small Lyapunov expo-

ments ofA are large enough so that the above first ordement region.
perturbed discussion is no longer correct. We consider a one-

dimensional system described by the matix A given
by Eq. (40), in which the quantitiesyj, j=1,2,... N are
chosen randomly from the regioma,p). Figure 1 is a

if all of the nonzero matrix elements!, j=1,2,... N, |
=1,2,...n, take the same value.
In this subsection we consider the case where the matrix

Lyapunov spectrum normalized by the maximum Lyapunovelemento!' is chosen randomly, like in the model discussed

exponent in such a system consisting of 100 partichs (
=100). Here, we chose the region,b) asa=w/2 andb

at the end of the preceding subsection. Figure 2 is the
Lyapunov spectrum normalized by the maximum Lyapunov

=3w/2, and took the arithmetic average over this randomexponent in the system described by the makix Al

ness for the normalized Lyapunov spectrum. Although theyith the quantitieso

magnitudeb — a(= w) of fluctuations in the matrix elements

(" chosen randomly from the region

(w/2,3w/2) for the case oh;=10, 15, and 20 in the system

of the matrixA is of the same scale as the averaged magniconsisting of 100 particlesN=100). (This randomness in

tude @+b)/2(= w) of the matrix elements of the matri¥,

the quantitiesr!'! is adopted to draw all of the figures here-

we can still recognize some steps in the Lyapunov spectrurfter in this subsectionln these graphs we took the arith-
in the region of small Lyapunov exponents. It is interestingmetic average of the Lyapunov spectra over the randomness
to note that in such a case the global shape of the Lyapungys the quantitie&rJ['] . This figure shows that the long range
spectrum is rather close to a straight line, like discussed ifhiaractions separate the Lyapunov spectrum clearly into a

Refs.[4-§].

C. Effect of long range interactions and wavelike structures
in eigenstates

In this subsection we consider the effects of long rang
interactions between particles on the Lyapunov spectru
The effect of the long range interactions between particle
can be taken into account using the matix=Al"!

=(Al") defined by

n

:I]:Z

[
A=2

[=(of 1+ o) &+ o1 8y ey + ok iy
+UJ['lN+|5j(k+N—|)+UE]—N+|5k<j+N—I)]' (46

with real constantSrJ['], wheren;(<N/2) is the length of

part exhibiting stepwise structure and a part changing
smoothly.(The randomness of the quantitie$’ is not es-

sential for this separation in the Lyapunov spectrum. It
mainly plays the role of smoothening the Lyapunov spectrum

é'n the region of large Lyapunov exponent3he stepwise
petructure of the Lyapunov spectrum appears only in a region
Qf small Lyapunov exponents, as suggested in the preceding

subsection.

The stepwise region of the Lyapunov spectrum becomes
smaller and smaller as the interaction lengthof particles
increases(As a limit of the long range interactions, as shown
in Appendix D, we can easily show that in the system, where
each particle interacts with all the other particles with the
same strength, all of the positive Lyapunov exponents take
the same valug.Besides, the heights of the steps of the
Lyapunov spectrum are approximately proportional to the
lengthn, of the interactions. These characteristics are clearly

the interactions and its value means that the particles caevident in Fig. 3, showing the length dependence of the

interact with up to theim th nearest-neighbor particles. As

jth positive Lyapunov exponent!, j=91,93,95,97,99 in

shown in Appendix D, we can obtain an analytical expresthe case of 100 particles. In these graphs we also took the

sion for the Lyapunov spectrum derived from the mat4g)

arithmetic average of the Lyapunov exponents over the ran-
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09—+ . - - chosen quantities!' . (Note that we did not take the average
08 | }:82 : o aspsaifett over the randomness of the quantities! to draw this fig-
07| FB o st ¢ & e | ure) The graphs(a), (b), (c), and (d) are the eigenstates
= . - corresponding to the Lyapunov exponenid!! for |
06 ° - Lt 1 =09,98, j=97,96, j=93,92, andj=91,90, respectively.
Es 05| " . ' s 1 These Lyapunov exponents correspond to the triangular dots
o fe m L L. surrounded by the broken lines in the inset of Fig. 2. We can
= 04y co " L _ | see clear wavelike structures of approximately sinusoidal
03t . Lt Lt ' 1 type in the graphga) and (b), which correspond to the
02 b Q . ' - Lot : | Lyapunov exponents composing the steps in the Lyapunov
s s .ot spectrum. The wavelength of the waves in the gréphis
Otr, e’ oe” | half of the wavelength of the waves in the grajah On the
0 LI : : : other hand, we cannot recognize such a wavelike structure in
0 5 10 " 15 20 25 the graphgc) and(d), which belongs to the Lyapunov expo-

nents in the part of the Lyapunov spectrum which is chang-
FIG. 3. Dependence of the long range interaction lemgtbn ~ ing smoothly.
the Lyapunov exponentalil/A[*] in the case ofN=100. The It should be noted that the wavelike structure of the eigen-
graphs with the circular dots, the triangular dots, the square dotstates already appears even in the system described by the
the open circular dots, and the open triangular dots correspond tmatrix A=A defined by Eq.(37) with nearest-neighbor
the case of =99,97,95,93, and 91, respectively. interactions of a constant strength. Therefore the point is that
such a wavelike structure of the eigenstates is not destroyed
domness of the quantitias . This figure shows that the by the long range interactions and the random interaction
values of small Lyapunov exponents increase with increasstrengths only in the eigenstates that correspond to the small
in the interaction lengtim, as long as they are in the region positive Lyapunov exponents in the steps of the Lyapunov
of the steps of the Lyapunov spectrum, and if the interactiorspectrum.

lengthn, is bigger than a critical value then their depen- One may regard the long range interactions discussed in
dences are slowed down, meaning that they are in the regidhis subsection as a kind of high dimensional effect, because
of the Lyapunov spectrum that is changing smoothly. if particles move in a two- or three-dimensional space then

It may be interesting to investigate the difference betweerthey can interact with more than two particles, even in hard-
the two parts of the Lyapunov spectrum from the point ofcore interactions. However, some high dimensional effects,
view of the eigenstate. Figure 4 is the real eigenstate of théor example, the total momentum conservation in each or-
matrix Al in the case of,=15 andN =100 with randomly  thogonal direction and so on, are still missing in the discus-

ol 77 7 m=15j=99 - | ol 7 7 7 n=15j=97 -
0 (@) n=15,j=98 - 027 (b n=15, j=96
0.15 | 1 0.45 | e R
y ﬁ.}fu‘““‘“‘.‘s&‘ ; ‘“‘.‘A..:' s _,.A“‘; ..
0.1 | & x " 1 01t .o TRt s
0.05 ; Y EE T3 S e A
Ug o & &0 % S Ugor Dos LT L
- - L4 N - . - LN B
005¢ < ., b 005k oL o FIG. 4. Eigenstates of matrix
-0.1 |4, & R 0.4 % N S ] AN in the case o =15 andN
045 [ e T~ o5 [ % wats o] =100: the graph(@ (j=98,99),
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 e graph (b) (j=96,97), the
K Kk graph (c) (j=92,93), and
the graph(d) (j=90,91) for the
R I T T 0O 5 - Lyapunov exponent\lll. These
(©) . ni=15j=02 - (d) n=15,j=90 - . Lyapunov exponents correspond
041 ] 0.4 1 ] to the triangular dots surrounded
by the broken lines in the inset of
0.2 . et )
L. TR I Fig. 2.
Ukj 0 fumms xn'*- DU STRCR N
-0.2 o
04 b -0.4
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
k k
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sions in this subsection. In the following section we consider (a) b
high dimensional effects more explicitly. /\/V\/V\/\/\/\/\/\ g Mg Og Mg Op Mg O
HYAVAVAViVAVAVAVAV.N \./ \./ \./

VI. TWO-DIMENSIONAL MODEL WITH A TRIANGULAR  AVAVAVAVAVA fi—"1 =2 3
LATTICE STRUCTURE /\/\/\,

) , , . ) ) — N = N2 = N3

In the one-dimensional models discussed in the precedin® \ /\ /\ /\
section, the steps of the Lyapunov spectrum are caused b £y — N AN N3
the periodic boundary conditions, and all of them consist of PBAAAAAALAALAAA /\ /\ /\ -
only two points. In this section we consider a two- £, _igﬁl;ii._:«éﬁlé.ﬁmjii
dimensional model, and show that it is possible to get wider 7 N 7N

NN TN

steps than in the one-dimensional model as a high dimen
sional effect. Specifically, we concentrate on a model that
has steps consisting of four and eight points, which are ac- FIG. 5. (a) The triangular lattice system with a square shape.
tually found in a square system consisting of many hards the number of particles in a horizontal line, adglis the number
disks[32]. of horizontal lines(b) Numbering of the particles and the boundary
In the two-dimensional system, the position of each par<condition in the part surrounded by the square of broken lin@)in
ticle is specified by a two-dimensional vectay;, ]
=1,2,... N, whereN is the number of the particles and by the fact that in Ref[32] the system consists of many
—2N. In such a case the matrikis a (N)x (2N) matrix,  disks that pack in a two-dimensional space as a hexagonal

and can be represented as a block matrix consisting oc]elose-packed structure in the high density limit. The triangu-
2% 2 matricesBU0, j=1,2 N andk=1,2 N. Here lar lattice has three directions to connect the sites, and ar-

(=g is given b range the triangular lattice so that it fits within a square
BYY=(Bj,) Is given by where one of the sides of the square is parallel to one of the
three directions of the triangular lattice, as shown in Fig) 5
(47) where such parallel lines are horizontal. For simplicity we
Aj)(2k-1) A2j)(2k) assume that the number of lattice sites in each horizontal line

, o ) is equal and is given b, (>1). We put the number of such
corresponding to the matrix 9°V/dq; dqy, and its COMpo-  |inas as N,, which should be roughly given by,
nents represent the strengths of the interactions betwee%r1(2/\/§),\|1

components of positions of thegh particle and thékth par-
ticle. The matrixBU¥ is symmetric and the matrii is also
symmetric in the sense of the block matrix, namely,

N,

B(K— Aei-1)2k-1) A@Ej-1)28

Next, we introduce the boundary condition for this trian-
gular lattice model. For this purpose we assign numbers
1,2,... N; to the lattice sitegnamely, particlesin the first

gk _ glik) _ g(ki) (48) horizontal row of particles from left to right, and numbers
ke kg ke N;+1N;+2,...,N; in the second row and so on until
The diagonal block8') is determined by the condition of the last row — numbered Np—1)N;+1,(Np—1)N,
the total momentum conservation +2,... N,Ny, as shown in Fig. &). We define the number

~ f,j—1 as the number of the particle that has nearest-neighbor
N interactions with the[2(j —1)N;+ 1]th particle, and the
> Blk=p, (49 number f, as the number of the particle that has
k=1 nearest-neighbor interactions with tH&(j —1)N,+ 1]th,
[(2j—21)N;+1]th, and [2jN;+1]th particles (
=1,2,...,In{N,/2}). Here, In{x} means to take the integer
part of x for any real numbek. We also define the numbers
g™ and g{”) as the numbers of the particles that have
nearest-neighbor interactions with thth particle through
the upper-left line and the upper-right line, respectively (
AIN=11= )\ [Nl (50) =1,2,... Nl);(See Fig. Bb) for the definitions of the num-
bersf; andg{*).) The numberf; specifies the interaction
corresponding to the conservation of the total momentum. between the left side and the right side of the square, and the
To construct a two-dimensional model it is convenient tonumbersg}i) specifies the interaction between the upper
use a lattice picture, because in the approach of this papeside line and the lower side of the square. In this section we
under the assumption discussed in Sec. IV, the model isonsider the case that these numbers are given by
specified by pairs of interacting particles and their interaction
strengths. In such a lattice, each lattice site corresponds to a

which  comes from Eq. (299 and the relation
S¢-1N9?V/ag; dq=0 and is simply the two-dimensional
version of the conditioi35). This condition(49) implies that
the Lyapunov exponents include at least two zero compo
nents:

particle and a connection between sites means that particles fj=iN1, (51)
on those two sites can interact with each other as nearest-

neighbor particles. Now we consider an equilateral triangular gf=(N;=1)No+  min  {h§?;h(I>0}, (52
lattice from such a point of view. This situation is motivated ke{1,2,...}

056202-8



STEPWISE STRUCTURE OF LYAPUNOV SPECTRARQ ..

whereh() is defined by

11
—)]1kNl. (53

hi’=j=Int Xn,-
2172 2

The boundary condition&1) and(52) imply that every line

of the three directions in the triangular lattice is periodic. We

assume the conditiog{”#g{ ™) so that every particle has
the six nearest-neighbor particles.
Before giving the matribA of the triangular lattice model

including a long range interaction, we consider the matrix

A=A, including only the effect of the nearest-neighbor in-
teractions of a constant strength. We define tinNg 2 2N,

matricesC, 1=1,2,3,4, each of which is a block matrix
consisting of 22 matrices C/¥, j=1,2,...N;, k
=1,2,... Ny, by
C=—6B5+ B [ 54+ 1) T S+ 1)+ Fjkny+ 1)
+ (-ny+ 1)l (54
ciW=p [SjkT Oj(k+1)T Sjk—n,+1)] (59
CYM=B [+ dyj+1)+ Ok(j-Ny+ 1)) (56)

jK) —
CY=Bdg") (v, -+ g -y -uwah (B7)

whereB is a 2x 2 matrix. The matriXA, is introduced as the
block matrix defined by

C; C;C 0 0 O 0 C,
C) C, C; 0 O )
0 C; C C, 0o

- 0 0 C; Cy GCg

Ao_ - T 1
0 0 0 C; Cg
0 0 C, C;
Cl 0 C, Cy

(58)

with the 2N; X 2N, null matrix 0, wherev is 2 (3) if N, is
an odd(even number.

The matrixA= A" of the triangular lattice model includ-
ing the effect of the long range interactions up to thth

nearest neighbor interactions is simply given as follows. We,

consider the matrix4; given by the matrixA, except that
the matrix/3 in the matrixA, are replaced by the22 ma-
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FIG. 6. Lyapunov spectrum of the triangular lattice system in
the case ofN;=13, N,=15~(2/y3)N;, andn,=3 (the triangular
dotg. The inset shows enlarged graphs of the part including the
stepwise structures in the Lyapunov spectra in the cade, ef13
andN,= 15 (the triangular dotsand the case dil;=N,= 14 (the
circular dot$ for a comparison. The Lyapunov spectrum in the case
of N;=N,=14 is shifted by—2 in thej direction, so that the
positions of the zero Lyapunov exponents coincide in both the
cases.

null upper off-diagonal blockBUX), j<k of the matrixAl™!
satisfying the conditiori48) by such a process, the diagonal
block BU1) and the lower off-diagonal block8UX), j>k of

the matrix A" are determined so that the mate¥™ is
symmetric and satisfies the conditigt9). It should be noted
that we could use a similar method to obtain the matti!
including the effect of long range interactions in the one-
dimensional model in the preceding section.

We restrict our consideration in the case that the22
matrix BU¥), which is the block element of the matri in
the two-dimensional system, is diagonalized,

B{)=BY’=0. (59
This means that two components of the position of each
particle do not interact with each other.

Now we calculate the Lyapunov spectrum for such a ma-
trix Al by using the formuld34). Figure 6 is the Lyapunov
spectrum normalized by the maximum Lyapunov exponent
in such a triangular lattice system in the caseNgf=13,
N,=15~(2/\/3)N;=15.011D... and nj=3. Here we
chose the nonzero elements in the upper triangle of the ma-
trix A" randomly from the positive region (G21.8w)
with a (nonzerd real constantw, and took the arithmetic
verage over this randomness. As in the one-dimensional
model including the long-range interactions, the Lyapunov
spectrum is separated into the part changing smoothly and

trices whose matrix elements are positive constants. By usingpe part having a stepwise structure, which appears in a re-

such a (AN{N,) X (2N;N,) matrix ;l(’, we calculate then,
times multiplication {44)™ of the matrix.4;. The nonzero
elements of the matriAl™! are equivalent to the nonzero
elements of the matrleo)nI After determining the non-

gion of small positive Lyapunov exponents.

A remarkable point in the two-dimensional triangular lat-
tice model, which the one-dimensional models do not have,
is the wide steps of the Lyapunov spectrum, especially the
step consisting of four points and the step consisting of eight
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points shown in Fig. 6. To give an explanation for these widecorrespond to the high density case, in which each particle
steps, we should notice that in this model we set up a perimainly interacts with only a few particles surrounding it.
odic boundary condition for each of the three directions ofSecond, in the hard-disk system with a square shape the step-
the triangular lattice. This boundary condition for each of thewise structure of the Lyapunov spectrum seems to be a rep-
three directions can cause degeneracies in the Lyapunatition of the step consisting of four points and the step con-
spectrum like in the one-dimensional cases. Besides, in thisisting of eight points. On the other hand, in the triangular
model each site of the triangular lattice has two independenattice model such a repetition of steps cannot be guaranteed.
degrees of freedom corresponding to the two dimensionalityAs the third point, in the triangular lattice model in this sec-
of the particles, which can also cause degeneracy in thgon we adopt the boundary condition to make each of the
Lyapunov spectrum due to conditidf9). Therefore we can three directions of the triangular lattice periodically, rather
get the step consisting of four points corresponding to eacthan the periodic boundary condition to make the up side
direction of the triangular lattice. Moreover two of the three (the left sidg¢ and the down sidé&he right side of the square
directions(namely, the two directions other than the horizon-equivalently, which was adopted in the numerical simulation
tal direction in Fig. 3 have the same numbers of the sites inof the hard-disk system.

themselves, so they can cause a degeneracy in the Lyapunov

spectrum. After all we get the step consisting of four points

corresponding to the horizontal direction, and the step con- VIl. CONCLUSION AND REMARKS

sisting of eight points corresponding to the other two direc- |, this paper we have discussed the Lyapunov spectrum in
tions. This explanati(_)n is partly justified by the fact that themany-particle systems described by a random matrix dynam-
Lyapunov spectrum in the case N =N, has the step con- jc5 \we started from the many-particle Hamiltonian mechan-
sisting of 12 points in the Lyapunov spectrum, shown in theics with no external force field, and introduced the Gaussian
inset of Fig. 6, where we gave the averaged Lyapunov speGyhite random interactions between the particles. In such a
trum normalized by the maximum Lyapunov exponent in thesystem the dynamics of the tangent space is expressed by a
case ofNy=N,=14 andn, = 3. Here, except for the numbers poker-Planck equation, which leads to a direct connection
N, and N, we used the same boundary condition and theyetween the positivéand zero Lyapunov exponents and the
same randomness for nonzero elements of the matfikas  time correlation of the matrix specifying the particle interac-
in the case oN;=13 andN,=15 in Fig. 6. This Lyapunov tions. Using this formula, we calculated concretely the
spectrum is shifted by-2 in thej direction, so that the Lyapunov spectra in one- and two-dimensional models satis-
positions of the zero Lyapunov exponents coincide with thefying the total momentum conservation with periodic bound-
cases ofN;=13 andN,=15. One may also notice that the ary conditions. These models show a stepwise structure of
parts changing smoothly in the Lyapunov spectrum are althe Lyapunov spectrum in the region of small positive
most indistinguishable in both the cases in the inset of Fig. 6Lyapunov exponents, which is robust to a perturbation in
Like in the one-dimensional model, longer range interac-matrix elements of the particle interaction matrix. The long
tions lead to a shorter region of stepwise structure in theange interactions between the particles lead to a clear sepa-
Lyapunov spectrum in the two-dimensional triangular latticeration into a part exhibiting stepwise structure and a part
model. On the other hand, a numerical simulation of thechanging smoothly. The part of the Lyapunov spectrum con-
many-disk system showed that the region of the stepwiseaining stepwise structure is clearly distinguished by a wave-
structure depends on the aspect ratio of the rectangular sybke structure in the eigenstates of the particle interaction
tem[32]. This fact suggests that the long range interactionsnatrix. In the two-dimensional model we got wider steps in
in the random matrix approach should depend on the aspetite Lyapunov spectrum than in the one-dimensional models,
ratio of the rectangular system. especially the steps consisting of four points and the steps
It should be emphasized that such wide step consisting afonsisting of eight points. These wide steps in the Lyapunov
four points or eight points are actually found in the two- spectrum have already been shown numerically in a deter-
dimensional deterministic chaotic system consisting of manyninistic chaotic system consisting of many hard-core disks.
hard-core disks numericall}32]. Besides, we should also One of the important simplifications in this random matrix
notice that in Fig. 6(and Fig. 2 a warp of the Lyapunov approach is that in this approach we do not have to refer to
spectrum appears in a region of large Lyapunov exponentshe phase space dynamics in order to determine the tangent
which is also a characteristic of the system consisting ogpace dynamics anymore. In general, the ma&(iy appear-
many hard-core disks. However, there are some points fang in Eqg. (8) can depend on the phase space dynamics, so
which the triangular lattice model in this section cannot givethis kind of separation of the phase space dynamics and the
enough explanation when compared with the numerically obtangent space dynamics cannot be allowed in deterministic
served features of the Lyapunov spectrum for the determinehaotic systems.
istic two-dimensional hard disk system. First, in the numeri- As emphasized in the discussion of the two-dimensional
cal simulation of the hard-disk system each particle catmodel, a lattice picture is useful to make a model in the
interact with almost any other particle in the long time limit. random matrix approach. Concerning this point it may be
This should correspond to a big numbermfN;N, in the interesting to note that some works for the Lyapunov spectra
triangular lattice model, but if we adopt such large numberfor many-particle systems indicated a similarity between the
for n; then the stepwise structure disappears in the triangulasolid state phenomena and the behavior of the Lyapunov
lattice model. In this sense, the model in this section maypectra for many-particle systems in a fluid phgk&40.
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We have regarded the random matrix dynamics in this ACKNOWLEDGMENT
paper as an imitation of the deterministic chaotic dynamics,
and reproduced some characteristics of chaotic systems, &
pecially the stepwise structure of the Lyapunov spectra.
However, we must not forget that there are some differences
between the chaotic dynamics and the random matrix dy-
namics in this paper. For example, in the random matrix
dynamics the movement of particles is not deterministic but In this appendix we derive the Fokker-Plank equatitd)
stochastic, so that the zero Lyapunov exponents arising frorfor the tangent vector space. Using the Kramers-Moyal ex-
the initial infinitesimal perturbation along the orbit in the pansion the dynamics of the probability densitysT,t) is
deterministic chaos do not appear in the random matrix dygiven by
namics.(Note that we got only the zero Lyapunov exponents

One of the author$T.T) wishes to thank C. P. Dettmann
helpful discussions.

APPENDIX A: MASTER EQUATION FOR THE
TANGENT SPACE

corresponding to the total momentum conservation in the ap(oTt) & 2N A 2N

models discussed in this papéie should also mention that o > 2 2 2 (-1

in the random matrix approach there is an additional statis- n=tiimtiz=l o de=t

tical average over the randomness of the interactions of par- IEM L (8T0)p(T1)

ticles, which does not exist in the deterministic dynamics. vz o , (A1)
This causes vagueness in the definition of the Lyapunov ex- 9oL’y 9ol ---dol;

ponents. In this paper we introduced the Lyapunov exponent

as the time averagedxponential rate of the randomness- WhereE}’l‘j)z,,,jn(él“,t) is defined by

averaged time evolutiomf a neighboring trajectory. This

definition allows us to get a simple connection between theﬁ(n) )

Lyapunov exponents and the time correlation of the interac~=J'lj'2~--1‘,1(511")E mhmg([él“jl(ws)— 5F11(t)]

tion matrix as shown in Eq26). However, this definition of 50

the Lyapunov exponent is not proper to discuss the negative X[ 8T (t+s)— 8T (1)]--- [T (t+5)
Lyapunov exponents and hence the pairing rule for the 2 2 "
Lyapunov spectrum. On the other hand, we could adopt the — 5an(t)])|ar(t)=5r (A2)

definition of the Lyapunov exponent as the time average of
the randomness-averaged exponential rate of time evolutiognq 8T|(t) is thejth component of the tangent vectdF (1)
of a neighboring trajectory. This definition should be proper[37],
to discuss the negative Lyapunov exponents. The comparison |t follows from Egs.(2), (5), (6), and(8) that
of these two definitions of the Lyapunov exponent is an un-
settled problem. - t+s
One may regard the random matrix approach using the 5I‘(t+s)—5F(t)={T exp{J dr L(7)
master equation in this paper as one of the analytical ap- ‘
proaches to calculate the Lyapunov exponents. The other sta- * rtas . .
=21 f dTnf dr,_q- f dry
n= t t

—1J ST(t)

tistical and analytical approach for the Lyapunov exponents
is the kinetic theoretical approach of Ref89,41]. In this

approach the positive Lyapunov exponents are calculated us- XJIL(7,)IL(7h_1)- - - IL(71) SI(1)
ing a Lorentz-Boltzmann equation, while the negative " n-t ! ’
Lyapunov exponents are calculated using an “anti-Lorentz- (A3)

Boltzmann equation” where the collision operator has the
opposite sign to the ordinary Lorentz-Boltzmann equation®nd
However, so far this kinetic theoretical approach can only
provide the maximum Lyapunov exponent and thed L(Tn)IL(Tn—1) - - IL(7y)
Kolmogorov-Sinai entropy for dilute gases. As another ana- (/0 I/m
lytical approach to the Lyapunov exponents, one may also ( ) )
mention the geometric approat2]. This approach can pro- R(m) 0
vide the largest Lyapunov exponent in terms of the average ((I)fl) 0 )

for n=1,

and fluctuations of the curvature of the configuration space. = for n=21, 1=12,...,
To improve the random matrix approach used in this pa-

per it is essential to know the statistical information for the 0  ®@m

interaction matrixR(t). It has already been shown numeri- 0 for n=21+1,1=12,... .

cally that the time average of the mati(t) is almost null \ -

in the system consisting of many hard-core digk3]. This (A4)

result justifies the conditio(®) in the case oh=1. A similar )

investigation of the correlation of the matri(t) in deter- Where®{, j=1,2 are defined by

ministic many-particle chaotic systems is one of the impor- W |

tant future problems. O V=R(72-1)R(73-3)- - -R(7)/m’, (A5)
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®{P=R(75)R(7z5)- - -R(75)/m (AG)

By using Egs.(9), (10), (A2), (A3), and(A4) we obtain

E@T,H=[EM (6,1, BN (6T, ... ERN6T,D]T

1
= Iim;([&F(HS)— SU(H) 1) srqy = or

s—0

=lim
s—0

:(5p1,5p2, -

EJHSdT(J L(7))sT

0pn,0,0,...,0/m, (A7)

E@(sTt)=[EP(T,1)]= I|m2—<[5F(t+s) ST(1)]
s—0

X[ST(t+5) = ST(1) 1) sty or

t+s t+s
—Ilm—f dK dr

o

sl
@ (o0))"
(A8)

X (IL(k)STSTTIL(7)]T) = (

o

whereW(5q)=[V¥(2(59)] is defined by

N N
2, 2 Diepidla 805 (RO)

N| =

REE

Here the only nonzero contributions come from the 1
term of Eq.(A3). For generah, the number of§ functions
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(1)
Y/J,v(t)

(B3)

where we used Eq912), (21), (22), and (23). Equations
(B1), (B2), and(B3) lead to

d3Y<1>(t) 24,
iy (1)
— Yt B4
ERFTORRR R RO (B4)
Y P 2o
3
ey KU (B5)
dY(l)(t) 2~
—ar - mYio. (B6)

It is noted that Eq(B4) is the differential equation only for
the quantity Y(l)(t)

If the quantityA; is zero, then the quantity {(t) is a
bilinear function of timet so that the Lyapunov exponent
defined by Eq(25) gives zero, namely, Eq26) is correct in
this case. In the case of;;#0, noting that the functions

from Eq.(10) must be only one less than the number of timeexp[(ZA“ /mz)j_/gt exp(27rk|/3)] k=0,1,2 are special solu-

integrals, to give a nonzero contribution. It is straightforward

to show that this never happens for- 1. The terms includ-
ing =" i (8T,t), n=3,4, ..., in theright-hand side of

»—4J112

Eq. (A1) are negligible because of the Gaussian white prop-

erties(9) and(10) of the random matriR(t). Using this fact
and Egs.(12), (Al), (A7), and(A8) we obtain the Fokker-
Planck equatior{13).

APPENDIX B: LYAPUNOV EXPONENTS IN THE
RANDOM MATRIX APPROACH

In this appendix we derive the expressi@b) for the
Lyapunov exponents from the definitid@d5). Transforming
Eqs (18), (19), and(20) into the equations for the quantities

(t) we obtain

(1)( ) 2

—gqr - mYiewm, (B1)
Y@
dt(t) P, (B2)

tions of Eq.(B4), we obtain the general solution

Yty =0® expkt)+ Re{ QP -ia®)

SER)

— 1
=0Mexp K;t)
3 3
- Qj(z)co{\/?_lcjt +Q§3)sin(\/7_let”
1
X ex —EICJ-t (B7)

of Eq. (B4) for the real functionY {{)(t) wherek is defined

by
1/3
K= ( Ay ) (BY)
1 2
m
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Here (', k=1,2,3 are real constants and are connected to

the initial condition as

1~ 2Y(2(0) 2?@(0)
(1" v(1) li
O =2 Y{P0)+ K, (ij)z (B9)
2 Y<2>(0) Y)0)
Q(Z)— Y<1> 0 . (B10
i (0)— K (mK 2 )
2 (3)( 0)
9(3)=—[Y(2) 0 : B11
e (0)— (B11)

by using Eqs(B5), (B6), and(B7). By substituting Eq(B7)
into Eq. (25) we obtain

13
: (B12)

Ajj

(2m)?

K;
N=

namely, Eq.(26).
Equations(B5) and(B6) imply that the quant|t|eé[(2)(t)

and Y(s)(t) are given by taking the first and second deriva-

tive of the quantityY’ (1)(t) with respect to the timg respec-
tively. This fact Ieads to the relation

lim — | Y D im Y(Z)(t) (B13
M IN=
2t Y](jl) O) 2t Y(z)(O)
i Y®(t)
=1lM—In=
-2t Y)(0)
(B14)

Namely, we get the same Lyapunov exponents as inZs).
through the equations lim..(2t) ~* IN[YP®/YX(0)], k
=2,3.

APPENDIX C: LYAPUNOV EXPONENTS FOR
ONE-DIMENSIONAL MODELS WITH THE NEAREST-
NEIGHBOR INTERACTIONS

In this appendix we give the derivation of Eq88) and
(39 from Egs.(34) and (37). We also show Eq941) and
(42) in the case oA=A@) + A1),

We define the discretized Fourier-transform matkx
=(F) by

Kl
Fk|E _27Ti_), (Cl)

1
—=eX
/N N

which is an unitary matrixF'F=FFT=1 with the super-
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N
S AOF =~ {2 exg — 2mijk/N)
a=1

N
+ Onj0j2 exd —2mi(j—1)k/N]

+ O0(n-1)j0j1 exd — 27 (j + 1)K/N]
+ OnjOin exd —2mi(j —N+1)k/N]
+ 60161 exd —2mi(j+N—1)k/N]}

=a(k0)ij, (CZ)
where 6 is defined by
1 inj=k, c3
%10 inj<k, €3
and satisfies the relationst;6,;= 0 and O,y
+01-1)n0n1=1 for any integet {2,3, ... N] and any in-

tegerne{1,2, ... N}. Here thekth elgenvaluea(o) of the
matrix A© is glven by

27Tk

al"= —Zw( 1—cos—

y (4

By using the formula34) for the eigenvalues; =al® given
by Eg. (C4) we obtain Eqgs.(38). The eigenvalues of the
matrix A(®) have degeneracies because of the relaigh,
=a{? in j<N/2, so we obtain Eq(39).

Equat|on(02) implies that the matribA(©) is diagonalized
by using the matrixF: (FTA©F);, =a{® s, . The eigenvec-
tor xJ(O) of the matrix A(®) correspondlng to the eigenvalue
a{” is represented as
Fap)T, (CH
so that we have the relatioh@x(?=a{@x?). This set of
eigenvectors satisfies the completeness condition and is nor-
malized, namelys_;xOx{P =1 andx(¥ (0= 5 .

Second, we expand thigh eigenvaluea; of the matrix
A=A+ AL in the small parametes, namely,a; =a(®

+eaV+ -, and consider the first order correctmlal}l)

by using the well-known perturbation theory for a degenerate
system. We introduce the eigenstajeof the matrixA cor-
respondlng to the eigenvalag, and expand it with the com-
plete set{x{”)}; of the vectors,

X](O)Z(Flj ,sz P

N
= X, (C6)
a=1 “
with the constantc;,=x{?"x;. The relationAx;=a;x; is
translated into the equation

N
2 ( )_aj 5ka+8Wka]C]a

(C7)

script T representing the Hermitian conjugate of the matrixfor the coefficients{c;.}; x and the eigenvalua; with the

First, it follows from Eqs.(37) and(C1) that

quantity
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in the case of <N/2, where we used the relati¢gW;_ )|

N =[xja®w| and numbered so that we obtaira{{’
We e>(<(§))and (t[l)e coefficient;, by the small parametes:, —aﬁ,llj)w/aj(o)BO. By using Eq.(C12 we also obtairaﬁ,)z
Cik=Cjk’ +&Cj’+ - - -. Now we calculate the first order cor- _~~ )
rectionseal’) and ea); of the eigenvalues; anday_;, =Xo@nz/ @ in the case of the numbe to be even, and
respectively, which have a degeneracy in the zeroth order O"F_(Nl)zo for the first ord_erocorrection to the nondegenerate
the parametet. For this purpose, instead of the coefficients eigenvalues of the Q“at”“(l)- By agD'Y!ng the formgla(Szll)
{cik}j.x appearing in Eq(C7) it is enough to consider the to the case ofy=al”+ealP+0(e?) with the quantitya™
zeroth order coefficient&c(Y)}; , which are zero except for  given by Eq.(C14) or (C15), we obtain Egs(41) and (42).

W =x{O TADXO) (C8)

(0)  «(0) (0) 0) .
Cii”» Ci(N—j)» C(N-});» and ¢\~ jyn—j)- This leads to the
equation APPENDIX D: LYAPUNOV EXPONENTS FOR
o ONE-DIMENSIONAL MODELS WITH LONG RANGE
Det( —an W Win-j) 0 (C9 INTERACTIONS OF A FIXED STRENGTH
. —_a@ . N
Win-p; T+ Win-jn-) In this appendix we calculate the Lyapunov spectra for the

for a®), whose solutions give the eigenvalugs) andaf? .
We can solve Eq(C9) and obtain

20 Wi FWen- -y
2
Wi —Win—ivnei) | 2
i (N—j)(N—]) 2
i\/( 5 FWin-pl*
(C10

noting the relatiori\/vka\/\lj*k with the superscript * repre-

senting the complex conjugate of the complex number. Th?his matrix Al

eigenvaluea’ has no degeneracy so we simply haaf¢’
=Wyy. If the numberN is even, then the eigenvalu))
has no degeneracy, so we also ha\(@=W(N,z)(N,2) in this
case.

By using Eqs.(40), (C1), (C5), and(C8) we obtain

Wy =—[1—exp(—2mik/N)]

N
X[1—exp2mil IN)IN"IX D, v, exd 2mia(k
a=1

—1)/N]. (C11)

Especially we derive
W= —|1 27ikIN) [ ZRo="2a® =W,
k= —|1—exp(—2mik/N)| Xo= &k = WiN-lg(N-K) -

(C12
Win—ty= —[1—exp(—2mik/N) %y, (C13

from Eqgs.(43), (C4), and(C1]). By substituting Eqs(C12)
and(C13 into Eqg.(C10 we obtain

a,( )27(X0+|Xj|), (C14
(0)
aylj ~ o~
a(Nlljo(XO_lXjD (C19

systems with long range interactions of a fixed strength. First
we consider the case described by the matix Al
=(AlR") defined by

n
KE:']: —2nwoj+ G’Zl [jk+1yt Sk(j+1) T Fj(k+N-1)

+ S n-nl, (DY)

with nj<N/2 and a(nonzer9 real constant. It should be
noted that the matrial™ given by Eq.(46) is attributed into
"l in the case or|!=w. The matrixAl™ is
diagonalized by the matri¥ defined by Eq(C1), and we
obtain the relation KTA[”']F)jk:Ef(”']éjk with the eigen-
vaIueEJ[”']E—ZE[n,—Zln':l cos(2rjl/N)]. By applying the
formula (34) to the eigenvalueajzagn'] we obtain the
Lyapunov exponent

20 n 211128
;‘ n|—|21cos<—N ” .

The Lyapunov exponents given by E@2) satisfies the re-
lation\; =N\ in j<N/2, so the Lyapunov spectrum of this
system has a stepwise structure.

Second we consider the case that each particle interacts
with all the other particles with the same strength. This is
described by the matria=ANA=(AINZ), which is de-
fined by

=

i (D2)

ARVZ=20(1-N&y), (D3)

namely, the matrix whose off-diagonal elements are nonzero
and equal each other. The matf@3) is diagonalized as

(FTK[N/Z]F)]-kz—ZNZ(l—5jN)5jk (D4)

by using the r@trix: defined Iﬂ/ Eq(C1), so the eigenvalues
of the matrix ANl are —2Nw and 0. By substituting the
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eigenvalues of the matrin=AIN in the formula(34) we  namely, the shape of positive Lyapunov spectrum in this sys-

obtain the Lyapunov spectrum as tem is just in a straight horizontal line. It should be noted that
23 the quantityw may depend on the numbhirof the particles
_ NE‘ in j=1,2,...N-1, in general. Therefore the consideration in this appendix is not
A= (D5) enough to discuss the particle number dependence of the

0 in j=N, maximum Lyapunov exponent.
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